Analysis and Evaluation of a Quasi-Passive Lower Limb Exoskeleton for Gait Rehabilitation

Authors

  • Niaam Kh. Al-Hayali Department of Biomedical Engineering/ Alkhwarizmi College of Engineering/ University of Baghdad/Baghdad - Iraq
  • Somer M. Nacy Department of Biomedical Engineering/ Alkhwarizmi College of Engineering/ University of Baghdad/Baghdad - Iraq
  • Jumaa S. Chiad Department of Mechanical Engineering/ College of Engineering/ Al-Nahrain University/ Baghdad – Iraq
  • O. Hussein Department of Automated Manufacturing Engineering/ Alkhwarizmi College of Engineering/ University of Baghdad/ Baghdad – Iraq

DOI:

https://doi.org/10.22153/kej.2021.12.007

Abstract

Lower extremity exoskeletons can assist with performing particular functions such as gait assistance, and physical therapy support for subjects who have lost the ability to walk. This paper presents the analysis and evaluation of lightweight and adjustable two degrees of freedom, quasi-passive lower limb device to improve gait rehabilitation. The exoskeleton consists of a high torque DC motor mounted on a metal plate above the hip joint, and a link that transmits assistance torque from the motor to the thigh. The knee joint is passively actuated by spring installed parallel with the joint. The action of the passive component (spring) is combined with mechanical output of the motor to provide a good control on the designed exoskeleton while walking. The results show that muscles' efforts on both the front and the back sides of the user's leg were decreased when walking using the exoskeleton with the motor and spring.

Downloads

Download data is not yet available.

References

G. M. Cestari, D. Sanz-Merodio, F.C. Arevalo, E, “ARES, a variable stiffness actuator with embedded force sensor for the ATLAS exoskeleton.” Industrial Robot: An International Journal, pp. 518–526, 2014.

K. Kong and D. Jeon, “Design and control of an exoskeleton for the elderly and patients,” IEEE/ASME Trans. Mechatronics, vol. 11, no. 4, pp. 428–432, 2006, doi: 10.1109/TMECH.2006.878550.

M. D. C. Sanchez-Villamañan, J. Gonzalez-Vargas, D. Torricelli, J. C. Moreno, and J. L. Pons, “Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles,” J. Neuroeng. Rehabil., vol. 16, no. 1, pp. 1–16, 2019, doi: 10.1186/s12984-019-0517-9.

R. Stopforth, “Customizable rehabilitation lower limb exoskeleton system,” Int. J. Adv. Robot. Syst., vol. 9, pp. 1–7, 2012, doi: 10.5772/53087.

S. Krut, M. Benoit, E. Dombre, and F. Pierrot, “MoonWalker, a lower limb exoskeleton able to sustain bodyweight using a passive force balancer,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 2215–2220, 2010, doi: 10.1109/ROBOT.2010.5509961.

M. Lyu, W. Chen, X. Ding, J. Wang, S. Bai, and H. Ren, “Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation,” Review of Scientific Instruments, vol. 87, no. 10. American Institute of Physics Inc., 01-Oct-2016, doi: 10.1063/1.4964136.

W. Huo, S. Mohammed, Y. Amirat, and K. Kong, “Active Impedance Control of a lower limb exoskeleton to assist sit-to-stand movement,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2016-June, pp. 3530–3536, 2016, doi: 10.1109/ICRA.2016.7487534.

B. Chen et al., “Recent developments and challenges of lower extremity exoskeletons,” J. Orthop. Transl., vol. 5, pp. 26–37, 2016, doi: 10.1016/j.jot.2015.09.007.

G. Chen, C. K. Chan, Z. Guo, and H. Yu, “A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy,” Crit. Rev. Biomed. Eng., vol. 41, no. 4–5, pp. 343–363, 2013, doi: 10.1615/CritRevBiomedEng.2014010453.

J. Zhou, S. Yang, and Q. Xue, “Lower limb rehabilitation exoskeleton robot : A review,” vol. 13, no. 1038, pp. 1–17, 2021, doi: 10.1177/16878140211011862.

T. Mikolajczyk et al., “Advanced technology for gait rehabilitation: An overview,” Adv. Mech. Eng., vol. 10, no. 7, pp. 1–19, 2018, doi: 10.1177/1687814018783627.

N. K. Al-hayali, J. S. Chiad, S. M. Nacy, and O. Hussein, “A Review of Passive and Quasi-Passive Lower Limb Exoskeletons for Gait Rehabilitation,” vol. 44, no. 9, pp. 428–439, 2021.

H. Kawamoto, S. Lee, S. Kanbe, and Y. Sankai, “Power assist method for HAL-3 using EMG-based feedback controller,” Proc. IEEE Int. Conf. Syst. Man Cybern., vol. 2, pp. 1648–1653, 2003, doi: 10.1109/icsmc.2003.1244649.

Y. He, D. Eguren, T. P. Luu, and J. L. Contreras-Vidal, “Risk management and regulations for lower limb medical exoskeletons: A review,” Med. Devices Evid. Res., vol. 10, pp. 89–107, 2017, doi: 10.2147/mder.s107134.

X. Zhang, Z. Yue, and J. Wang, “Robotics in Lower-Limb Rehabilitation after Stroke,” Behav. Neurol., vol. 2017, 2017, doi: 10.1155/2017/3731802.

Z. Yang, W. Gu, J. Zhang, and L. Gui, Force Control Theory and Method of Human Load Carrying Exoskeleton Suit. 2017.

C. Woods, L. Callagher, and T. Jaffray, “Walk tall: The story of Rex Bionics,” J. Manag. Organ., no. December, pp. 1–14, 2018, doi: 10.1017/jmo.2018.68.

G. Barbareschi, R. Richards, M. Thornton, T. Carlson, and C. Holloway, “Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2015-Novem, no. September, pp. 6728–6731, 2015, doi: 10.1109/EMBC.2015.7319937.

V. Lajeunesse, C. Vincent, F. Routhier, E. Careau, and F. Michaud, “Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury,” Disabil. Rehabil. Assist. Technol., vol. 11, no. 7, pp. 535–547, 2016, doi: 10.3109/17483107.2015.1080766.

S. K. Banala, S. K. Agrawal, and J. P. Scholz, “Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients,” in 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, 2007, pp. 401–407, doi: 10.1109/ICORR.2007.4428456.

S. K. Banala, S. K. Agrawal, S. H. Kim, and J. P. Scholz, “Novel gait adaptation and neuromotor training results using an active leg exoskeleton,” IEEE/ASME Trans. Mechatronics, vol. 15, no. 2, pp. 216–225, 2010, doi: 10.1109/TMECH.2010.2041245.

S. K. Banala, S. H. Kim, S. K. Agrawal, and J. P. Scholz, “Robot assisted gait training with active leg exoskeleton (ALEX),” Proc. 2nd Bienn. IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatronics, BioRob 2008, vol. 17, no. 1, pp. 653–658, 2008, doi: 10.1109/BIOROB.2008.4762885.

“Ekso Bionics.” [Online]. Available: https://eksobionics.com/[accessed 04.10.15]. [Accessed: 05-Feb-2020].

Y. M. Pirjade, D. R. Londhe, N. M. Patwardhan, A. U. Kotkar, T. P. Shelke, and S. S. Ohol, “Design and Fabrication of a Low-cost Human Body Lower Limb Exoskeleton,” 2020 6th Int. Conf. Mechatronics Robot. Eng. ICMRE 2020, pp. 32–37, 2020, doi: 10.1109/ICMRE49073.2020.9065128.

M. Cardona and C. E. García Cena, “Biomechanical Analysis of the Lower Limb: A Full-Body Musculoskeletal Model for Muscle-Driven Simulation,” IEEE Access, vol. 7, pp. 92709–92723, 2019, doi: 10.1109/ACCESS.2019.2927515.

Downloads

Published

2021-12-29

How to Cite

Analysis and Evaluation of a Quasi-Passive Lower Limb Exoskeleton for Gait Rehabilitation. (2021). Al-Khwarizmi Engineering Journal, 17(4), 36-47. https://doi.org/10.22153/kej.2021.12.007

Publication Dates