Abstract
Lower extremity exoskeletons can assist with performing particular functions such as gait assistance, and physical therapy support for subjects who have lost the ability to walk. This paper presents the analysis and evaluation of lightweight and adjustable two degrees of freedom, quasi-passive lower limb device to improve gait rehabilitation. The exoskeleton consists of a high torque DC motor mounted on a metal plate above the hip joint, and a link that transmits assistance torque from the motor to the thigh. The knee joint is passively actuated by spring installed parallel with the joint. The action of the passive component (spring) is combined with mechanical output of the motor to provide a good control on the designed exoskeleton while walking. The results show that muscles' efforts on both the front and the back sides of the user's leg were decreased when walking using the exoskeleton with the motor and spring.
References
G. M. Cestari, D. Sanz-Merodio, F.C. Arevalo, E, “ARES, a variable stiffness actuator with embedded force sensor for the ATLAS exoskeleton.” Industrial Robot: An International Journal, pp. 518–526, 2014.
K. Kong and D. Jeon, “Design and control of an exoskeleton for the elderly and patients,” IEEE/ASME Trans. Mechatronics, vol. 11, no. 4, pp. 428–432, 2006, doi: 10.1109/TMECH.2006.878550.
M. D. C. Sanchez-Villamañan, J. Gonzalez-Vargas, D. Torricelli, J. C. Moreno, and J. L. Pons, “Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles,” J. Neuroeng. Rehabil., vol. 16, no. 1, pp. 1–16, 2019, doi: 10.1186/s12984-019-0517-9.
R. Stopforth, “Customizable rehabilitation lower limb exoskeleton system,” Int. J. Adv. Robot. Syst., vol. 9, pp. 1–7, 2012, doi: 10.5772/53087.
S. Krut, M. Benoit, E. Dombre, and F. Pierrot, “MoonWalker, a lower limb exoskeleton able to sustain bodyweight using a passive force balancer,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 2215–2220, 2010, doi: 10.1109/ROBOT.2010.5509961.
M. Lyu, W. Chen, X. Ding, J. Wang, S. Bai, and H. Ren, “Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation,” Review of Scientific Instruments, vol. 87, no. 10. American Institute of Physics Inc., 01-Oct-2016, doi: 10.1063/1.4964136.
W. Huo, S. Mohammed, Y. Amirat, and K. Kong, “Active Impedance Control of a lower limb exoskeleton to assist sit-to-stand movement,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2016-June, pp. 3530–3536, 2016, doi: 10.1109/ICRA.2016.7487534.
B. Chen et al., “Recent developments and challenges of lower extremity exoskeletons,” J. Orthop. Transl., vol. 5, pp. 26–37, 2016, doi: 10.1016/j.jot.2015.09.007.
G. Chen, C. K. Chan, Z. Guo, and H. Yu, “A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy,” Crit. Rev. Biomed. Eng., vol. 41, no. 4–5, pp. 343–363, 2013, doi: 10.1615/CritRevBiomedEng.2014010453.
J. Zhou, S. Yang, and Q. Xue, “Lower limb rehabilitation exoskeleton robot : A review,” vol. 13, no. 1038, pp. 1–17, 2021, doi: 10.1177/16878140211011862.
T. Mikolajczyk et al., “Advanced technology for gait rehabilitation: An overview,” Adv. Mech. Eng., vol. 10, no. 7, pp. 1–19, 2018, doi: 10.1177/1687814018783627.
N. K. Al-hayali, J. S. Chiad, S. M. Nacy, and O. Hussein, “A Review of Passive and Quasi-Passive Lower Limb Exoskeletons for Gait Rehabilitation,” vol. 44, no. 9, pp. 428–439, 2021.
H. Kawamoto, S. Lee, S. Kanbe, and Y. Sankai, “Power assist method for HAL-3 using EMG-based feedback controller,” Proc. IEEE Int. Conf. Syst. Man Cybern., vol. 2, pp. 1648–1653, 2003, doi: 10.1109/icsmc.2003.1244649.
Y. He, D. Eguren, T. P. Luu, and J. L. Contreras-Vidal, “Risk management and regulations for lower limb medical exoskeletons: A review,” Med. Devices Evid. Res., vol. 10, pp. 89–107, 2017, doi: 10.2147/mder.s107134.
X. Zhang, Z. Yue, and J. Wang, “Robotics in Lower-Limb Rehabilitation after Stroke,” Behav. Neurol., vol. 2017, 2017, doi: 10.1155/2017/3731802.
Z. Yang, W. Gu, J. Zhang, and L. Gui, Force Control Theory and Method of Human Load Carrying Exoskeleton Suit. 2017.
C. Woods, L. Callagher, and T. Jaffray, “Walk tall: The story of Rex Bionics,” J. Manag. Organ., no. December, pp. 1–14, 2018, doi: 10.1017/jmo.2018.68.
G. Barbareschi, R. Richards, M. Thornton, T. Carlson, and C. Holloway, “Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2015-Novem, no. September, pp. 6728–6731, 2015, doi: 10.1109/EMBC.2015.7319937.
V. Lajeunesse, C. Vincent, F. Routhier, E. Careau, and F. Michaud, “Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury,” Disabil. Rehabil. Assist. Technol., vol. 11, no. 7, pp. 535–547, 2016, doi: 10.3109/17483107.2015.1080766.
S. K. Banala, S. K. Agrawal, and J. P. Scholz, “Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients,” in 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, 2007, pp. 401–407, doi: 10.1109/ICORR.2007.4428456.
S. K. Banala, S. K. Agrawal, S. H. Kim, and J. P. Scholz, “Novel gait adaptation and neuromotor training results using an active leg exoskeleton,” IEEE/ASME Trans. Mechatronics, vol. 15, no. 2, pp. 216–225, 2010, doi: 10.1109/TMECH.2010.2041245.
S. K. Banala, S. H. Kim, S. K. Agrawal, and J. P. Scholz, “Robot assisted gait training with active leg exoskeleton (ALEX),” Proc. 2nd Bienn. IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatronics, BioRob 2008, vol. 17, no. 1, pp. 653–658, 2008, doi: 10.1109/BIOROB.2008.4762885.
“Ekso Bionics.” [Online]. Available: https://eksobionics.com/[accessed 04.10.15]. [Accessed: 05-Feb-2020].
Y. M. Pirjade, D. R. Londhe, N. M. Patwardhan, A. U. Kotkar, T. P. Shelke, and S. S. Ohol, “Design and Fabrication of a Low-cost Human Body Lower Limb Exoskeleton,” 2020 6th Int. Conf. Mechatronics Robot. Eng. ICMRE 2020, pp. 32–37, 2020, doi: 10.1109/ICMRE49073.2020.9065128.
M. Cardona and C. E. García Cena, “Biomechanical Analysis of the Lower Limb: A Full-Body Musculoskeletal Model for Muscle-Driven Simulation,” IEEE Access, vol. 7, pp. 92709–92723, 2019, doi: 10.1109/ACCESS.2019.2927515.
Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.