Citric Acid Production: Raw Material, Microbial Production, Fermentation Strategy and Global Market: Critical Review
PDF

How to Cite

Citric Acid Production: Raw Material, Microbial Production, Fermentation Strategy and Global Market: Critical Review. (2023). Al-Khwarizmi Engineering Journal, 19(2), 1-14. https://doi.org/10.22153/kej.2023.12.002

Abstract

Citric acid is an essential ingredient for the manufacture of (12) key industrial chemicals. Citric acid use is increasing steadily with a high annual growth rate as a result of the development of ever more sophisticated applications. Citric acid is widely utilized in the food and pharmaceutical industries due to its low toxicity when compared to other acidulous. Other uses for citric acid can be found in cleaning supplies and detergents. Based on information from a review of the literature, Citric acid production substrates and methods for surface fermentation, submerged fermentation, solid-state fermentation, and international market expansion are all covered in the current review study. Finally, there is still much to learn about the circumstances of the production of citric acid from raw materials, microorganisms, and fermentation techniques to achieve the best production in terms of cost and quality.

 

PDF

References

B. Igliński, U. Kiełkowska, and G. Piechota, “Proecological aspects of citric acid technology,” Clean Technologies and Environmental Policy, vol. 24, no. 7, pp. 2061–2079, Apr. 2022, doi: 10.1007/s10098-022-02316-y.

P. A. Wells and H. T. Herrick, “Citric Acid Industry,” Industrial & Engineering Chemistry, vol. 30, no. 3, pp. 255–262, Mar. 1938, doi: 10.1021/ie50339a004.

R. Salihu et al., “Citric acid: A green cross-linker of biomaterials for biomedical applications,” European Polymer Journal, vol. 146, p. 110271, Mar. 2021, doi: 10.1016/j.eurpolymj.2021.110271.

C. P. Kubicek, M. Röhr, and H. J. Rehm, “Citric Acid Fermentation,” Critical Reviews in Biotechnology, vol. 3, no. 4, pp. 331–373, Jan. 1985, doi: 10.3109/07388558509150788.

D. A. Salih and S. R. Yasin, “Palm dates as a source for isolation of Aspergillus niger to produce citric acid by submerged fermentation; kinetics study,” IOP Conference Series: Materials Science and Engineering, vol. 928, no. 2, p. 022072, Nov. 2020, doi: 10.1088/1757-899x/928/2/022072.

E. Papadaki and F. Th. Mantzouridou, “Citric acid production from the integration of Spanish-style green olive processing wastewaters with white grape pomace by Aspergillus niger,” Bioresource Technology, vol. 280, pp. 59–69, May 2019, doi: 10.1016/j.biortech.2019.01.139.

A. Abghari and S. Chen, “Engineering Yarrowia lipolytica for Enhanced Production of Lipid and Citric Acid,” Fermentation, vol. 3, no. 3, p. 34, Jul. 2017, doi: 10.3390/fermentation3030034.

P. L. Show, K. O. Oladele, Q. Y. Siew, F. A. Aziz Zakry, J. C.-W. Lan, and T. C. Ling, “Overview of citric acid production from Aspergillus niger,” Frontiers in Life Science, vol. 8, no. 3, pp. 271–283, Apr. 2015, doi: 10.1080/21553769.2015.1033653.

H. S. Auta, K. T. Abidoye, H. Tahir, A. D. Ibrahim, and S. A. Aransiola, “Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp,” International Scholarly Research Notices, vol. 2014, pp. 1–8, Nov. 2014, doi: 10.1155/2014/762021.

R. Ciriminna, F. Meneguzzo, R. Delisi, and M. Pagliaro, “Citric acid: emerging applications of key biotechnology industrial product,” Chemistry Central Journal, vol. 11, no. 1, Mar. 2017, doi: 10.1186/s13065-017-0251-y.

M. Yadegary et al., “Citric Acid Production from Sugarcane Bagasse through Solid State Fermentation Method Using Aspergillus niger Mold and Optimization of Citric Acid Production by Taguchi Method,” Jundishapur Journal of Microbiology, vol. 6, no. 9, Nov. 2013, doi: 10.5812/jjm.7625.

S. Guc and O. Erkmen, “Citric Acid Production from Nontreated Beet Molasses by a Novel Aspergillus niger Strain: Effects of pH, Sugar and Ingredients,” Journal of Food: Microbiology, Safety & Hygiene, vol. 02, no. 02, 2017, doi: 10.4172/2476-2059.1000122.

J. Ye, S. Luo, A. Huang, J. Chen, C. Liu, and D. J. McClements, “Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch,” Food Hydrocolloids, vol. 92, pp. 135–142, Jul. 2019, doi: 10.1016/j.foodhyd.2019.01.064.

O. O. Aboyeji, J. K. Oloke, A. O. Arinkoola, M. A. Oke, and M. M. Ishola, “Optimization of media components and fermentation conditions for citric acid production from sweet potato peel starch hydrolysate by Aspergillus niger,” Scientific African, vol. 10, p. e00554, Nov. 2020, doi: 10.1016/j.sciaf.2020.e00554.

N. A. Amenaghawon and F. A. Aisien, “Modelling and Simulation of Citric Acid Production from Corn Starch Hydrolysate Using Aspergillus Niger,” Environment and Natural Resources Research, vol. 2, no. 1, Feb. 2012, doi: 10.5539/enrr.v2n1p73.

Z. Tong, Y. Tong, D. Wang, and Y. Shi, “Whole Maize Flour and Isolated Maize Starch for Production of Citric Acid byAspergillus niger : A Review,” Starch - Stärke, p. 2000014, Apr. 2021, doi: 10.1002/star.202000014.

A. O. Adeoye and A. Lateef, “Biotechnological valorization of cashew apple juice for the production of citric acid by a local strain of Aspergillus niger LCFS 5,” Journal of Genetic Engineering and Biotechnology, vol. 19, no. 1, Sep. 2021, doi: 10.1186/s43141-021-00232-0.

A. O. Adeoye and A. Lateef, “Improving the Yield of Citric Acid Through Valorization of Cashew Apple Juice by Aspergillus niger: Mutation, Nanoparticles Supplementation and Taguchi Technique,” Waste and Biomass Valorization, vol. 13, no. 4, pp. 2195–2206, Jan. 2022, doi: 10.1007/s12649-021-01646-0.

E. Papadaki and F. Th. Mantzouridou, “Citric acid production from the integration of Spanish-style green olive processing wastewaters with white grape pomace by Aspergillus niger,” Bioresource Technology, vol. 280, pp. 59–69, May 2019, doi: 10.1016/j.biortech.2019.01.139.

E. Papadaki, K. N. Kontogiannopoulos, A. N. Assimopoulou, and F. Th. Mantzouridou, “Feasibility of multi-hydrolytic enzymes production from optimized grape pomace residues and wheat bran mixture using Aspergillus niger in an integrated citric acid-enzymes production process,” Bioresource Technology, vol. 309, p. 123317, Aug. 2020, doi: 10.1016/j.biortech.2020.123317.

Kareem, S. O., Akpan, I., and Alebiowu, O. O., “Production of citric acid by Aspergillus niger using pineapple waste,” Malaysian Journal of Microbiology, Dec. 2010, doi: 10.21161/mjm.19009.

Augustine. O. Ayeni et al., “Production of Citric Acid from the Fermentation of Pineapple Waste by Aspergillus niger,” The Open Chemical Engineering Journal, vol. 13, no. 1, pp. 88–96, Jul. 2019, doi: 10.2174/1874123101913010088.

M., Zafar, H. S., Bano, & Z, Anwar. Orange Peels Valorization For Citric Acid Production Through Single And Co-Culture Fermentation. Jordan Journal of Biological Sciences, (2021). 14(2). doi: 10.54319/jjbs/140209.

H. S. Hamdy, “Citric acid production by Aspergillus niger grown on orange peel medium fortified with cane molasses,” Annals of Microbiology, vol. 63, no. 1, pp. 267–278, May 2012, doi: 10.1007/s13213-012-0470-3.

K. Rachwał, A. Waśko, K. Gustaw, and M. Polak-Berecka, “Utilization of brewery wastes in food industry,” PeerJ, vol. 8, p. e9427, Jul. 2020, doi: 10.7717/peerj.9427.

S. O.Kareem, I.Akpan and O. O. Alebiowu, “Production of citric acid by Aspergillus niger using pineapple waste,” Malaysian Journal of Microbiology, Dec. 2010, doi: 10.21161/mjm.19009.

O. Kurita, T. Fujiwara, and E. Yamazaki, “Characterization of the pectin extracted from citrus peel in the presence of citric acid,” Carbohydrate Polymers, vol. 74, no. 3, pp. 725–730, Nov. 2008, doi: 10.1016/j.carbpol.2008.04.033.

S. B. Hussain, C.-Y. Shi, L.-X. Guo, H. M. Kamran, A. Sadka, and Y.-Z. Liu, “Recent Advances in the Regulation of Citric Acid Metabolism in Citrus Fruit,” Critical Reviews in Plant Sciences, vol. 36, no. 4, pp. 241–256, Jul. 2017, doi: 10.1080/07352689.2017.1402850.

P. Van Hung, N. T. M. Huong, N. T. L. Phi, and N. N. T. Tien, “Physicochemical characteristics and in vitro digestibility of potato and cassava starches under organic acid and heat-moisture treatments,” International Journal of Biological Macromolecules, vol. 95, pp. 299–305, Feb. 2017, doi: 10.1016/j.ijbiomac.2016.11.074.

R. A. Abd Alsaheb, A. Aladdin, N. Z. Othman, R. Abd Malek, O. M. Leng, R. Aziz, & El Enshasy, H. A. (2015). Lactic acid applications in pharmaceutical and cosmeceutical industries. Journal of Chemical and Pharmaceutical Research, 7(10), 729-735.

P. Ferreira, M. Mota, and I. Belo, “Citric acid production by Yarrowia lipolytica from crude glycerol: Influence of oxygen mass transfer rate (OTR),” Journal of Biotechnology, vol. 208, p. S48, Aug. 2015, doi: 10.1016/j.jbiotec.2015.06.140.

M. Lambros, T. (Henry) Tran, Q. Fei, and M. Nicolaou, “Citric Acid: A Multifunctional Pharmaceutical Excipient,” Pharmaceutics, vol. 14, no. 5, p. 972, Apr. 2022, doi: 10.3390/pharmaceutics14050972.

O. Sawant, S. Mahale, V. Ramchandran, G. Nagaraj, and A. Bankar, “FUNGAL CITRIC ACID PRODUCTION USING WASTE MATERIALS: A MINI-REVIEW,” Journal of microbiology, biotechnology and food sciences, vol. 8, no. 2, pp. 821–828, Oct. 2018, doi: 10.15414/jmbfs.2018.8.2.821-828.

G. Blair and P. Staal, “Citric Acid,” Kirk-Othmer Encyclopedia of Chemical Technology, Dec. 2000, doi: 10.1002/0471238961.0309201802120109.a01.

S. Tanpong, A. Cherdthong, B. Tengjaroenkul, U. Tengjaroenkul, and S. Wongtangtintharn, “Evaluation of physical and chemical properties of citric acid industrial waste,” Tropical Animal Health and Production, vol. 51, no. 8, pp. 2167–2174, May 2019, doi: 10.1007/s11250-019-01917-y.

M. Melaku, R. Zhong, H. Han, F. Wan, B. Yi, and H. Zhang, “Butyric and Citric Acids and Their Salts in Poultry Nutrition: Effects on Gut Health and Intestinal Microbiota,” International Journal of Molecular Sciences, vol. 22, no. 19, p. 10392, Sep. 2021, doi: 10.3390/ijms221910392.

E. A. I. Al-Mokhtar and S. E. A. Bakhiet, “Production of Citric Acid by Aspergillus Niger Using Sugarcane Molasses as Substrate,” Jordan Journal of Biological Sciences, vol. 8, no. 3, pp. 211–215, 2015, doi: 10.12816/0026960.

B. C. Behera, “Citric acid fromAspergillus niger: a comprehensive overview,” Critical Reviews in Microbiology, vol. 46, no. 6, pp. 727–749, Oct. 2020, doi: 10.1080/1040841x.2020.1828815.

A. Apelblat, “Properties of Citric Acid and Its Solutions,” Citric Acid, pp. 13–141, 2014, doi: 10.1007/978-3-319-11233-6_2.

S. S. Behera, R. C. Ray, U. Das, S. K. Panda, and P. Saranraj, “Microorganisms in Fermentation,” Learning Materials in Biosciences, pp. 1–39, 2019, doi: 10.1007/978-3-030-16230-6_1.

C. R. Chilakamarry, A. M. M. Sakinah, and A. W. Zularisam, “Opportunities of biodiesel industry waste conversion into value-added products,” Materials Today: Proceedings, vol. 57, pp. 1014–1020, 2022, doi: 10.1016/j.matpr.2021.08.248.

R. Ciriminna, F. Meneguzzo, R. Delisi, and M. Pagliaro, “Citric acid: emerging applications of key biotechnology industrial product,” Chemistry Central Journal, vol. 11, no. 1, Mar. 2017, doi: 10.1186/s13065-017-0251-y.

P. Çalı́k, G. Çalı́k, and T. H. Özdamar, “Oxygen transfer effects in serine alkaline protease fermentation by Bacillus licheniformis: use of citric acid as the carbon source,” Enzyme and Microbial Technology, vol. 23, no. 7–8, pp. 451–461, Nov. 1998, doi: 10.1016/s0141-0229(98)00069-6.

D. Chergui, S. Akretche-Kelfat, L. Lamoudi, M. Al-Rshaidat, F. Boudjelal, and H. Ait-Amar, “Optimization of citric acid production by Aspergillus niger using two downgraded Algerian date varieties,” Saudi Journal of Biological Sciences, vol. 28, no. 12, pp. 7134–7141, Dec. 2021, doi: 10.1016/j.sjbs.2021.08.013.

N. Kongklom, Z. Shi, Y. Chisti, and S. Sirisansaneeyakul, “Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls,” Applied Biochemistry and Biotechnology, vol. 182, no. 3, pp. 990–999, Dec. 2016, doi: 10.1007/s12010-016-2376-1.

P. L. Show, K. O. Oladele, Q. Y. Siew, F. A. Aziz Zakry, J. C.-W. Lan, and T. C. Ling, “Overview of citric acid production from Aspergillus niger,” Frontiers in Life Science, vol. 8, no. 3, pp. 271–283, Apr. 2015, doi: 10.1080/21553769.2015.1033653.

S. Papanikolaou, M. Galiotou-Panayotou, S. Fakas, M. Komaitis, and G. Aggelis, “Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media,” Bioresource Technology, vol. 99, no. 7, pp. 2419–2428, May 2008, doi: 10.1016/j.biortech.2007.05.005.

I. Morgunov, S. Kamzolova, and J. Lunina, “Citric Acid Production by Yarrowia lipolytica Yeast on Different Renewable Raw Materials,” Fermentation, vol. 4, no. 2, p. 36, May 2018, doi: 10.3390/fermentation4020036.

R. A. ABD ALSAHEB, J. K. ABDULLAH, &, A. S. A. LAFI. (2022). SYSTEMATIC COMPARISON OF GLUCONIC ACID OPTIMIZATION PRODUCED BY ASPERGILLUS USING RAW BIORESOURCES CULTIVATION MEDIUM. Journal of Engineering Science and Technology, 17(1), 0673-0688.

L. P. S. Vandenberghe, C. R. Soccol, A. Pandey, and J.-M. Lebeault, “Microbial production of citric acid,” Brazilian Archives of Biology and Technology, vol. 42, no. 3, pp. 263–276, 1999, doi: 10.1590/s1516-89131999000300001.

S. K. Yalcin, M. Tijen Bozdemir, and Z. Yesim Ozbas, “Effects of initial medium pH and temperature on growth and citric acid production kinetics of a novel domestic Yarrowia lipolytica strain,” New Biotechnology, vol. 29, p. S62, Sep. 2012, doi: 10.1016/j.nbt.2012.08.173.

B. Igliński, U. Kiełkowska, and G. Piechota, “Proecological aspects of citric acid technology,” Clean Technologies and Environmental Policy, vol. 24, no. 7, pp. 2061–2079, Apr. 2022, doi: 10.1007/s10098-022-02316-y.

S. Sharma, S. Parkhey, A. Saraf, and S. Das, “Citric Acid Production from Waste Substrate by Using Some Fungi,” Journal of Advances in Microbiology, pp. 34–56, Jan. 2021, doi: 10.9734/jamb/2020/v20i1230307.

L. P. S. Vandenberghe, S. G. Karp, P. Z. de Oliveira, J. C. de Carvalho, C. Rodrigues, and C. R. Soccol, “Solid-State Fermentation for the Production of Organic Acids,” Current Developments in Biotechnology and Bioengineering, pp. 415–434, 2018, doi: 10.1016/b978-0-444-63990-5.00018-9.

M. A. El-Bendary and M. E. Moharam, “Formulation of spore toxin complex of Bacillus thuringiensis and Lysinibacillus sphaericus grown under solid state fermentation,” Biological Control, vol. 131, pp. 54–61, Apr. 2019, doi: 10.1016/j.biocontrol.2019.01.005.

G. S. Dhillon, S. K. Brar, and M. Verma, “Biotechnological potential of industrial wastes for economical citric acid bioproduction by Aspergillus niger through submerged fermentation,” International Journal of Food Science & Technology, vol. 47, no. 3, pp. 542–548, Dec. 2011, doi: 10.1111/j.1365-2621.2011.02875.x.

S. AKIYAMA, “Fermentative Production of Citric Acid from n-Paraffins,” Journal of Japan Oil Chemists’ Society, vol. 23, no. 8, pp. 438–444, 1974, doi: 10.5650/jos1956.23.438.

S. Akiyama, T. Suzuki, Y. Sumino, Y. Nakao, and H. Fukuda, “Induction and Citric Acid Productivity of Fluoroacetate-sensitive Mutant Strains ofCandida lipolytica,” Agricultural and Biological Chemistry, vol. 37, no. 4, pp. 879–884, Apr. 1973, doi: 10.1080/00021369.1973.10860763.

Y. D. Hang and E. E. Woodams, “Grape pomace: A novel substrate for microbial production of citric acid,” Biotechnology Letters, vol. 7, no. 4, pp. 253–254, Apr. 1985, doi: 10.1007/bf01042372.

Q.-Z. Li et al., “Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry,” Journal of Microbiology and Biotechnology, vol. 26, no. 1, pp. 1–8, Jan. 2016, doi: 10.4014/jmb.1505.05049.

E. O. Karow and S. A. Waksman, “Production of Citric Acid in Submerged Culture,” Industrial & Engineering Chemistry, vol. 39, no. 7, pp. 821–825, Jul. 1947, doi: 10.1021/ie50451a004.

T. ROUKAS, “Production of Citric Acid from Beet Molasses by Immobilized Cells of Aspergillus niger,” Journal of Food Science, vol. 56, no. 3, pp. 878–880, May 1991, doi: 10.1111/j.1365-2621.1991.tb05409.x.

H. S. Grewal and K. L. Kalra, “Fungal production of citric acid,” Biotechnology Advances, vol. 13, no. 2, pp. 209–234, Jan. 1995, doi: 10.1016/0734-9750(95)00002-8.

Q.-Z. Li et al., “Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry,” Journal of Microbiology and Biotechnology, vol. 26, no. 1, pp. 1–8, Jan. 2016, doi: 10.4014/jmb.1505.05049.

B. Wang et al., “High-efficient production of citric acid by Aspergillus niger from high concentration of substrate based on the staged-addition glucoamylase strategy,” Bioprocess and Biosystems Engineering, vol. 40, no. 6, pp. 891–899, Apr. 2017, doi: 10.1007/s00449-017-1753-7.

B. Yu et al., “Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam,” Journal of Biotechnology, vol. 276–277, pp. 1–9, Jun. 2018, doi: 10.1016/j.jbiotec.2018.03.015.

N. A. Gutierrez, I. A. McKay, C. E. French, J. D. Brooks, and I. S. Maddox, “Repression of galactose utilization by glucose in the citrate-producing yeastCandida guilliermondii,” Journal of Industrial Microbiology, vol. 11, no. 3, pp. 143–146, May 1993, doi: 10.1007/bf01583714.

A. Amato, A. Becci, and F. Beolchini, “Citric acid bioproduction: the technological innovation change,” Critical Reviews in Biotechnology, vol. 40, no. 2, pp. 199–212, Jan. 2020, doi: 10.1080/07388551.2019.1709799.

I. Morgunov, S. Kamzolova, and J. Lunina, “Citric Acid Production by Yarrowia lipolytica Yeast on Different Renewable Raw Materials,” Fermentation, vol. 4, no. 2, p. 36, May 2018, doi: 10.3390/fermentation4020036.

W. Hu, W. Li, H. Yang, and J. Chen, “Current strategies and future prospects for enhancing microbial production of citric acid,” Applied Microbiology and Biotechnology, vol. 103, no. 1, pp. 201–209, Nov. 2018, doi: 10.1007/s00253-018-9491-6.

J. C. E. Francisco, W. L. Rivera, and P. G. Vital, “Influences of carbohydrate, nitrogen, and phosphorus sources on the citric acid production by fungal endophyte Aspergillus fumigatus P3I6,” Preparative Biochemistry & Biotechnology, vol. 50, no. 3, pp. 292–301, Dec. 2019, doi: 10.1080/10826068.2019.1689510.

S. Zhang, S. S. Jagtap, A. Deewan, and C. V. Rao, “pH selectively regulates citric acid and lipid production in Yarrowia lipolytica W29 during nitrogen-limited growth on glucose,” Journal of Biotechnology, vol. 290, pp. 10–15, Jan. 2019, doi: 10.1016/j.jbiotec.2018.10.012.

S. V. Kamzolova and I. G. Morgunov, “Effect of Metabolic Regulators and Aeration on Isocitric Acid Synthesis by Yarrowia lipolytica Grown on Ester-Aldehyde Fraction,” Fermentation, vol. 7, no. 4, p. 283, Nov. 2021, doi: 10.3390/fermentation7040283.

I. Hussain et al., “Effect of Metals or Trace Elements on Wheat Growth and Its Remediation in Contaminated Soil,” Journal of Plant Growth Regulation, Jun. 2022, doi: 10.1007/s00344-022-10700-7.

A. C. Rodrigues et al., “Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium,” New Biotechnology, vol. 49, pp. 19–27, Mar. 2019, doi: 10.1016/j.nbt.2018.12.002.

O. Sawant, S. Mahale, V. Ramchandran, G. Nagaraj, and A. Bankar, “FUNGAL CITRIC ACID PRODUCTION USING WASTE MATERIALS: A MINI-REVIEW,” Journal of microbiology, biotechnology and food sciences, vol. 8, no. 2, pp. 821–828, Oct. 2018, doi: 10.15414/jmbfs.2018.8.2.821-828.

Sweta V. Lende, Heera Karemore, and Milind J. Umekar, “Review on production of citric acid by fermentation technology,” GSC Biological and Pharmaceutical Sciences, vol. 17, no. 3, pp. 085–093, Dec. 2021, doi: 10.30574/gscbps.2021.17.3.0313.

L. P. S. Vandenberghe, S. G. Karp, P. Z. de Oliveira, J. C. de Carvalho, C. Rodrigues, and C. R. Soccol, “Solid-State Fermentation for the Production of Organic Acids,” Current Developments in Biotechnology and Bioengineering, pp. 415–434, 2018, doi: 10.1016/b978-0-444-63990-5.00018-9.

S. Arora, R. Rani, and S. Ghosh, “Bioreactors in solid state fermentation technology: Design, applications and engineering aspects,” Journal of Biotechnology, vol. 269, pp. 16–34, Mar. 2018, doi: 10.1016/j.jbiotec.2018.01.010.

C. Webb, “Design Aspects of Solid State Fermentation as Applied to Microbial Bioprocessing,” Journal of Applied Biotechnology & Bioengineering, vol. 4, no. 1, Oct. 2017, doi: 10.15406/jabb.2017.04.00094.

R. Nike Ahmed, M. Oluwaseyi Bamigboye, K. Abiodun Ajijolakewu, S. Olakunle Idris, and N. T. Ajide Bamigboye, “ISOLATION, CHARACTERIZATION AND ANTIBACTERIAL SREENING OF ANTIBIOTICS PRODUCED FROM STREPTOMYCES ISOLATED FROM DUMPSITE SOILS IN ILORIN, NORTH CENTRAL NIGERIA,” Malaysian Journal of Science, vol. 40, no. 3, pp. 1–17, Oct. 2021, doi: 10.22452/mjs.vol40no3.1.

R. A. Alsaheb et al., “Bioprocess Optimization for Exopolysaccharides Production by Ganoderma lucidum in Semi-industrial Scale,” Recent Patents on Food, Nutrition & Agriculture, vol. 11, no. 3, pp. 211–218, Dec. 2020, doi: 10.2174/2212798411666200316153148.

Z. Tong, Y. Tong, D. Wang, and Y. Shi, “Whole Maize Flour and Isolated Maize Starch for Production of Citric Acid by Aspergillus niger : A Review,” Starch - Stärke, p. 2000014, Apr. 2021, doi: 10.1002/star.202000014.

P. L. Show, K. O. Oladele, Q. Y. Siew, F. A. Aziz Zakry, J. C.-W. Lan, and T. C. Ling, “Overview of citric acid production from Aspergillus niger,” Frontiers in Life Science, vol. 8, no. 3, pp. 271–283, Apr. 2015, doi: 10.1080/21553769.2015.1033653.

B. C. Behera, “Citric acid fromAspergillus niger: a comprehensive overview,” Critical Reviews in Microbiology, vol. 46, no. 6, pp. 727–749, Oct. 2020, doi: 10.1080/1040841x.2020.1828815.

G. S. Dhillon, S. K. Brar, S. Kaur, and M. Verma, “Bioproduction and extraction optimization of citric acid from Aspergillus niger by rotating drum type solid-state bioreactor,” Industrial Crops and Products, vol. 41, pp. 78–84, Jan. 2013, doi: 10.1016/j.indcrop.2012.04.001.

T. Roukas and P. Kotzekidou, “Pomegranate peel waste: a new substrate for citric acid production by Aspergillus niger in solid-state fermentation under non-aseptic conditions,” Environmental Science and Pollution Research, vol. 27, no. 12, pp. 13105–13113, Feb. 2020, doi: 10.1007/s11356-020-07928-9.

A. Miyamoto et al., “Sirtuin SirD is involved in α-amylase activity and citric acid production in Aspergillus luchuensis mut. kawachii during a solid-state fermentation process,” Journal of Bioscience and Bioengineering, vol. 129, no. 4, pp. 454–466, Apr. 2020, doi: 10.1016/j.jbiosc.2019.11.004.

J. Wang, Z. Cui, Y. Li, L. Cao, and Z. Lu, “Techno-economic analysis and environmental impact assessment of citric acid production through different recovery methods,” Journal of Cleaner Production, vol. 249, p. 119315, Mar. 2020, doi: 10.1016/j.jclepro.2019.119315.

B. Kumara Behera and A. Varma, “Upstream Processes,” Microbial Biomass Process Technologies and Management, pp. 45–107, 2017, doi: 10.1007/978-3-319-53913-3_2.

A. S. Ajala, A. O. Adeoye, S. A. Olaniyan, and O. T. Fasonyin, “A study on effect of fermentation conditions on citric acid production from cassava peels,” Scientific African, vol. 8, p. e00396, Jul. 2020, doi: 10.1016/j.sciaf.2020.e00396.

A. K. Kola, M. Mekala, and V. R. Goli, “Experimental design data for the biosynthesis of citric acid using Central Composite Design method,” Data in Brief, vol. 12, pp. 234–241, Jun. 2017, doi: 10.1016/j.dib.2017.03.049.

U. Perwitasari et al., “Cacao pod husk for citric acid production under solid state fermentation using response surface method,” Biomass Conversion and Biorefinery, Jul. 2021, doi: 10.1007/s13399-021-01690-9.

O. and C. Nkemnaso, “Solid State Fermentation: Substrates Uses and Applications in Biomass and Metabolites Production - A Review,” South Asian Research Journal of Biology and Applied Biosciences, vol. 01, no. 01, pp. 20–29, Jul. 2019, doi: 10.36346/sarjbab.2019.v01i01.004.

L. M. Rocha, B. S. Campanhol, and R. G. Bastos, “Solid-State Cultivation of Aspergillus niger–Trichoderma reesei from Sugarcane Bagasse with Vinasse in Bench Packed-Bed Column Bioreactor,” Applied Biochemistry and Biotechnology, vol. 193, no. 9, pp. 2983–2992, May 2021, doi: 10.1007/s12010-021-03579-9.

Z. He et al., “Acetic acid, vinegar, and citric acid as washing materials for cuticle removal to improve hatching performance of quail eggs,” Poultry Science, vol. 99, no. 8, pp. 3865–3876, Aug. 2020, doi: 10.1016/j.psj.2020.04.018.

J. Wang, Z. Cui, Y. Li, L. Cao, and Z. Lu, “Techno-economic analysis and environmental impact assessment of citric acid production through different recovery methods,” Journal of Cleaner Production, vol. 249, p. 119315, Mar. 2020, doi: 10.1016/j.jclepro.2019.119315.

C. L. Perez, F. P. Casciatori, and J. C. Thoméo, “Improving enzyme production by solid-state cultivation in packed-bed bioreactors by changing bed porosity and airflow distribution,” Bioprocess and Biosystems Engineering, vol. 44, no. 3, pp. 537–548, Nov. 2020, doi: 10.1007/s00449-020-02466-7.

R. G. Bastos and H. C. Ribeiro, “Citric Acid Production by the Solid-State Cultivation Consortium of Aspergillus Niger and Trichoderma Reesei from Sugarcane Bagasse,” The Open Biotechnology Journal, vol. 14, no. 1, pp. 32–41, Mar. 2020, doi: 10.2174/1874070702014010032.

M. I. Massadeh, K. Fandi, H. Al-Abeid, O. Alsharafat, and K. Abu-Elteen, “Production of Citric Acid by Aspergillus niger Cultivated in Olive Mill Wastewater Using a Two-Stage Packed Column Bioreactor,” Fermentation, vol. 8, no. 4, p. 153, Mar. 2022, doi: 10.3390/fermentation8040153.

R. G. Bastos and H. C. Ribeiro, “Citric Acid Production by the Solid-State Cultivation Consortium of Aspergillus Niger and Trichoderma Reesei from Sugarcane Bagasse,” The Open Biotechnology Journal, vol. 14, no. 1, pp. 32–41, Mar. 2020, doi: 10.2174/1874070702014010032.

L. O. Cano y Postigo, D. A. Jacobo-Velázquez, D. Guajardo-Flores, L. E. Garcia Amezquita, and T. García-Cayuela, “Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility,” Food Bioscience, vol. 41, p. 100926, Jun. 2021, doi: 10.1016/j.fbio.2021.100926.

G. Patel, M. D. Patil, S. Soni, Y. Chisti, and U. C. Banerjee, “Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation,” Applied Biochemistry and Biotechnology, vol. 182, no. 1, pp. 97–109, Nov. 2016, doi: 10.1007/s12010-016-2313-3.

M. Yadegary et al., “Citric Acid Production from Sugarcane Bagasse through Solid State Fermentation Method Using Aspergillus niger Mold and Optimization of Citric Acid Production by Taguchi Method,” Jundishapur Journal of Microbiology, vol. 6, no. 9, Nov. 2013, doi: 10.5812/jjm.7625.

C. R. Chilakamarry et al., “Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges,” Bioresource Technology, vol. 343, p. 126065, Jan. 2022, doi: 10.1016/j.biortech.2021.126065.

B. S. Börekçi, G. Kaban, and M. Kaya, “Citric Acid Production of Yeasts: An Overview,” The EuroBiotech Journal, vol. 5, no. 2, pp. 79–91, Apr. 2021, doi: 10.2478/ebtj-2021-0012.

A. M. Torrado et al., “Citric acid production from orange peel wastes by solid-state fermentation,” Brazilian Journal of Microbiology, vol. 42, no. 1, pp. 394–409, Mar. 2011, doi: 10.1590/s1517-83822011000100049.

S. M. Martin, “Citric Acid Production by Submerged Fermentation,” Industrial & Engineering Chemistry, vol. 49, no. 8, pp. 1231–1232, Aug. 1957, doi: 10.1021/ie50572a022.

T. K. Chirova, A. Kumar and A. Panwar, “Citric acid production by Aspergillus niger using different substrates,” Malaysian Journal of Microbiology, Sep. 2016, doi: 10.21161/mjm.71215.

T. C. Cairns et al., “Functional exploration of co-expression networks identifies a nexus for modulating protein and citric acid titres in Aspergillus niger submerged culture,” Fungal Biology and Biotechnology, vol. 6, no. 1, Nov. 2019, doi: 10.1186/s40694-019-0081-x.

M. G. Gomes, L. V. A. Gurgel, M. A. Baffi, and D. Pasquini, “Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis,” Renewable Energy, vol. 157, pp. 332–341, Sep. 2020, doi: 10.1016/j.renene.2020.05.002.

H. Luo et al., “Citric acid production using a biological electrodialysis with bipolar membrane,” Journal of Membrane Science, vol. 523, pp. 122–128, Feb. 2017, doi: 10.1016/j.memsci.2016.09.063.

O. Ben Braïek and S. Smaoui, “Chemistry, Safety, and Challenges of the Use of Organic Acids and Their Derivative Salts in Meat Preservation,” Journal of Food Quality, vol. 2021, pp. 1–20, Feb. 2021, doi: 10.1155/2021/6653190.

D. E. EL-Ghwas, A. S. Al-Nasser, and G. A. Zamil, “Zinc Oxide Nanoparticles Bacterial Synthesis and Application,” Research Journal of Pharmacy and Technology, pp. 471–480, Jan. 2022, doi: 10.52711/0974-360x.2022.00077.

Data Bridge Market Research analyses that the global citric acid market,2021.

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.