Succinic acid Production Strategy: Raw material, Organisms and Recent Applications in pharmaceutical and Food: Critical Review
PDF

How to Cite

Succinic acid Production Strategy: Raw material, Organisms and Recent Applications in pharmaceutical and Food: Critical Review. (2023). Al-Khwarizmi Engineering Journal, 19(1), 70-80. https://doi.org/10.22153/kej.2023.01.002

Publication Dates

Abstract

Succinic acid is an essential base ingredient for manufacturing various industrial chemicals. Succinic acid has been acknowledged as one of the most significant bio based building block chemicals. Rapid demand for succinic acid has been noticed in the last 10 years. The production methods and mechanisms developed. Hence, these techniques and operations need to be revised. Recently, an omnibus rule for developing succinic acid is to find renewable carbohydrate Feedstocks. The sustainability of the resource is crucial to disintegrate the massive use of petroleum based-production. Accordingly, systematically reviewing the latest findings of bacterial production and related fermentation methods is critical. Therefore, this paper aims to study the latest research and assess the findings statistically comprehensively. The current review attempt is a step toward comprehending all the conditions surrounding succinic acid production from raw materials, microorganisms, and fermentation methods.

PDF

References

[1] R. Rafieenia, “Metabolic capabilities of Actinobacillus succinogenes for succinic acid production,” Brazilian Journal of Chemical Engineering, vol. 31, no. 4, pp. 859–865, Dec. 2014, doi: 10.1590/0104-6632.20140314s00002997.

“Bio-Electrocatalytic Conversion of Food Waste to Ethylene via Succinic Acid as the Central Intermediate”, doi: 10.1021/acscatal.2c02689.s002.

D. N. Putri, M. Sahlan, L. Montastruc, M. Meyer, S. Negny, and H. Hermansyah, “Progress of fermentation methods for bio-succinic acid production using agro-industrial waste by Actinobacillus succinogenes,” Energy Reports, vol. 6, pp. 234–239, Feb. 2020, doi: 10.1016/j.egyr.2019.08.050.

J. Lu et al., “Recent progress on bio-succinic acid production from lignocellulosic biomass,” World Journal of Microbiology and Biotechnology, vol. 37, no. 1, Jan. 2021, doi: 10.1007/s11274-020-02979-z.

N. Anuar, S. N. Yusop, and K. J. Roberts, “Crystallisation of organic materials from the solution phase: a molecular, synthonic and crystallographic perspective,” Crystallography Reviews, vol. 28, no. 2–3, pp. 97–215, Jul. 2022, doi: 10.1080/0889311x.2022.2123916.

P.-L. Lam et al., “Development of hydrocortisone succinic acid/and 5-fluorouracil/chitosan microcapsules for oral and topical drug deliveries,” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 9, pp. 3213–3218, May 2012, doi: 10.1016/j.bmcl.2012.03.031.

V. Siracusa and I. Blanco, “Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications,” Polymers, vol. 12, no. 8, p. 1641, Jul. 2020, doi: 10.3390/polym12081641.

E. Altuntepe, A. Reinhardt, J. Brinkmann, T. Briesemann, G. Sadowski, and C. Held, “Phase Behavior of Binary Mixtures Containing Succinic Acid or Its Esters,” Journal of Chemical & Engineering Data, vol. 62, no. 7, pp. 1983–1993, Jun. 2017, doi: 10.1021/acs.jced.7b00005.

D. K. Song and Y. K. Sung, “Synthesis and characterization of biodegradable poly(1,4-butanediol succinate),” Journal of Applied Polymer Science, vol. 56, no. 11, pp. 1381–1395, Jun. 1995, doi: 10.1002/app.1995.070561102.

R. K. Saxena, S. Saran, J. Isar, and R. Kaushik, “Production and Applications of Succinic Acid,” Current Developments in Biotechnology and Bioengineering, pp. 601–630, 2017, doi: 10.1016/b978-0-444-63662-1.00027-0.

I. Goldberg, J. S. Rokem, and O. Pines, “Organic acids: old metabolites, new themes,” Journal of Chemical Technology & Biotechnology, vol. 81, no. 10, pp. 1601–1611, 2006, doi: 10.1002/jctb.1590.

S. Jampatesh, A. Sawisit, N. Wong, S. S. Jantama, and K. Jantama, “Evaluation of inhibitory effect and feasible utilization of dilute acid-pretreated rice straws on succinate production by metabolically engineered Escherichia coli AS1600a,” Bioresource Technology, vol. 273, pp. 93–102, Feb. 2019, doi: 10.1016/j.biortech.2018.11.002.

N. Xiao et al., “Ginsenoside Rg5 attenuates hepatic glucagon response via suppression of succinate-associated HIF-1α induction in HFD-fed mice,” Diabetologia, vol. 60, no. 6, pp. 1084–1093, Mar. 2017, doi: 10.1007/s00125-017-4238-y.

C. M. Pichler et al., “Bio-Electrocatalytic Conversion of Food Waste to Ethylene via Succinic Acid as the Central Intermediate,” ACS Catalysis, vol. 12, no. 21, pp. 13360–13371, Oct. 2022, doi: 10.1021/acscatal.2c02689.

A. Purohit and A. Mohan, “Antimicrobial effects of pyruvic and succinic acids on Salmonella survival in ground chicken,” LWT, vol. 116, p. 108596, Dec. 2019, doi: 10.1016/j.lwt.2019.108596.

A. Kuenz, L. Hoffmann, K. Goy, S. Bromann, and U. Prüße, “High-Level Production of Succinic Acid from Crude Glycerol by a Wild Type Organism,” Catalysts, vol. 10, no. 5, p. 470, Apr. 2020, doi: 10.3390/catal10050470.

S. L. Miller, “The mechanism of synthesis of amino acids by electric discharges,” Biochimica et Biophysica Acta, vol. 23, pp. 480–489, Jan. 1957, doi: 10.1016/0006-3002(57)90366-9.

A. Rigaki, C. Webb, and C. Theodoropoulos, “Double substrate limitation model for the bio-based production of succinic acid from glycerol,” Biochemical Engineering Journal, vol. 153, p. 107391, Jan. 2020, doi: 10.1016/j.bej.2019.107391.

P. López-Porfiri, P. Gorgojo, and M. González-Miquel, “Solubility study and thermodynamic modelling of succinic acid and fumaric acid in bio-based solvents,” Journal of Molecular Liquids, vol. 369, p. 120836, Jan. 2023, doi: 10.1016/j.molliq.2022.120836.

A. R. Klapwijk, E. Simone, Z. K. Nagy, and C. C. Wilson, “Tuning Crystal Morphology of Succinic Acid Using a Polymer Additive,” Crystal Growth & Design, vol. 16, no. 8, pp. 4349–4359, Jul. 2016, doi: 10.1021/acs.cgd.6b00465.

U. G. Hong, H. W. Park, J. Lee, S. Hwang, and I. K. Song, “Hydrogenation of succinic acid to γ-butyrolactone (GBL) over ruthenium catalyst supported on surfactant-templated mesoporous carbon,” Journal of Industrial and Engineering Chemistry, vol. 18, no. 1, pp. 462–468, Jan. 2012, doi: 10.1016/j.jiec.2011.11.054.

N. Sarwar, U. Bin Humayoun, A. Nawaz, and D. H. Yoon, “Development of sustainable, cost effective foam finishing approach for cellulosic textile employing succinic acid/xylitol crosslinking system,” Sustainable Materials and Technologies, vol. 30, p. e00350, Dec. 2021, doi: 10.1016/j.susmat.2021.e00350.

M. A. Amin, S. S. Abd El-Rehim, E. E. F. El-Sherbini, and R. S. Bayoumi, “The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid,” Electrochimica Acta, vol. 52, no. 11, pp. 3588–3600, Mar. 2007, doi: 10.1016/j.electacta.2006.10.019.

V. Narisetty et al., “Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production,” Bioresource Technology, vol. 360, p. 127513, Sep. 2022, doi: 10.1016/j.biortech.2022.127513.

Q. Yang et al., “Comprehensive investigation of succinic acid production by Actinobacillus succinogenes : a promising native succinic acid producer,” Biofuels, Bioproducts and Biorefining, vol. 14, no. 5, pp. 950–964, Nov. 2019, doi: 10.1002/bbb.2058.

E. Stylianou, C. Pateraki, D. Ladakis, A. Vlysidis, and A. Koutinas, “Optimization of fermentation medium for succinic acid production using Basfia succiniciproducens,” Environmental Technology & Innovation, vol. 24, p. 101914, Nov. 2021, doi: 10.1016/j.eti.2021.101914.

J. Lee, “Optimization and Scale-Up of Succinic Acid Production by Mannheimia succiniciproducens LPK7,” Journal of Microbiology and Biotechnology, vol. 19, no. 2, pp. 167–171, Feb. 2009, doi: 10.4014/jmb.0807.447.

M. Xiao et al., “A novel point mutation in RpoB improves osmotolerance and succinic acid production in Escherichia coli,” BMC Biotechnology, vol. 17, no. 1, Feb. 2017, doi: 10.1186/s12896-017-0337-6.

S. Saravanamurugan and A. Riisager, “Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides,” Catalysis Communications, vol. 17, pp. 71–75, Jan. 2012, doi: 10.1016/j.catcom.2011.10.001.

M. Ferone, F. Raganati, G. Olivieri, P. Salatino, and A. Marzocchella, “Continuous Succinic Acid Fermentation by Actinobacillus Succinogenes: Assessment of Growth and Succinic Acid Production Kinetics,” Applied Biochemistry and Biotechnology, vol. 187, no. 3, pp. 782–799, Aug. 2018, doi: 10.1007/s12010-018-2846-8.

C. Xu et al., “Co-fermentation of succinic acid and ethanol from sugarcane bagasse based on full hexose and pentose utilization and carbon dioxide reduction,” Bioresource Technology, vol. 339, p. 125578, Nov. 2021, doi: 10.1016/j.biortech.2021.125578.

A. Mazière, P. Prinsen, A. García, R. Luque, and C. Len, “A review of progress in (bio)catalytic routes from/to renewable succinic acid,” Biofuels, Bioproducts and Biorefining, vol. 11, no. 5, pp. 908–931, Jun. 2017, doi: 10.1002/bbb.1785.

S. K. C. Lin, C. Du, A. Koutinas, R. Wang, and C. Webb, “Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes,” Biochemical Engineering Journal, vol. 41, no. 2, pp. 128–135, Sep. 2008, doi: 10.1016/j.bej.2008.03.013.

W. Dessie et al., “Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes,” Applied Microbiology and Biotechnology, vol. 102, no. 23, pp. 9893–9910, Sep. 2018, doi: 10.1007/s00253-018-9379-5.

M. Ferone, F. Raganati, G. Olivieri, P. Salatino, and A. Marzocchella, “Continuous Succinic Acid Fermentation by Actinobacillus Succinogenes: Assessment of Growth and Succinic Acid Production Kinetics,” Applied Biochemistry and Biotechnology, vol. 187, no. 3, pp. 782–799, Aug. 2018, doi: 10.1007/s12010-018-2846-8.

Z. Dai et al., “Bio‐based succinic acid: an overview of strain development, substrate utilization, and downstream purification,” Biofuels, Bioproducts and Biorefining, vol. 14, no. 5, pp. 965–985, Nov. 2019, doi: 10.1002/bbb.2063.

R. Ciriminna, F. Meneguzzo, R. Delisi, and M. Pagliaro, “Citric acid: emerging applications of key biotechnology industrial product,” Chemistry Central Journal, vol. 11, no. 1, Mar. 2017, doi: 10.1186/s13065-017-0251-y.

R. A. Alsaheb et al., Aladdin, A., Othman, N. Z., Abd Malek, R., Leng, O. M., Aziz, R., & El Enshasy, H. A. (2015). Lactic acid applications in pharmaceutical and cosmeceutical industries. Journal of Chemical and Pharmaceutical Research, 7(10), 729-735.

R. A. Alsaheb et al., “Bioprocess and medium optimization for glutamic acid production using submerged fermentation in shake flask and bioreactor. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 9(3),6787-6791

R. A. Alsaheb et al ., "SYSTEMATIC COMPARISON OF GLUCONIC ACID OPTIMIZATION PRODUCED BY ASPERGILLUS USING RAW BIORESOURCES CULTIVATION MEDIUM" Journal of Engineering Science and Technology, 17(1), 0673-0688.

S. Behera, R. Arora, N. Nandhagopal, and S. Kumar, “Importance of chemical pretreatment for bioconversion of lignocellulosic biomass,” Renewable and Sustainable Energy Reviews, vol. 36, pp. 91–106, Aug. 2014, doi: 10.1016/j.rser.2014.04.047.

A. A. Indera Luthfi, J. Md. Jahim, S. Harun, J. P. Tan, and A. W. Mohammad, “Biorefinery approach towards greener succinic acid production from oil palm frond bagasse,” Process Biochemistry, vol. 51, no. 10, pp. 1527–1537, Oct. 2016, doi: 10.1016/j.procbio.2016.08.011.

D. B. Bevilaqua, S. Montipó, G. B. Pedroso, and A. F. Martins, “Sustainable succinic acid production from rice husks,” Sustainable Chemistry and Pharmacy, vol. 1, pp. 9–13, Jun. 2015, doi: 10.1016/j.scp.2015.09.001.

Q. Li, J. A. Siles, and I. P. Thompson, “Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85,” Applied Microbiology and Biotechnology, vol. 88, no. 3, pp. 671–678, Jul. 2010, doi: 10.1007/s00253-010-2726-9.

Abd Alsaheb, R. A., Elsayed, E. A., Abd Malek, R., Musa, N. F., & El-Enshasy, H. A. Production D-Lactic Acid from Cassava Starch by Lactobacillus Delbruekii In The Semi Industrial Scale 16-L Bioreactor.

K. Chen, M. Jiang, P. Wei, J. Yao, and H. Wu, “Succinic Acid Production from Acid Hydrolysate of Corn Fiber by Actinobacillus succinogenes,” Applied Biochemistry and Biotechnology, vol. 160, no. 2, pp. 477–485, Oct. 2008, doi: 10.1007/s12010-008-8367-0.

S. L. Childs et al., “Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine,” CrystEngComm, vol. 10, no. 7, p. 856, 2008, doi: 10.1039/b715396a.

S. A. Myz et al., “Synthesis of co-crystals of meloxicam with carboxylic acids by grinding,” Mendeleev Communications, vol. 19, no. 5, pp. 272–274, Sep. 2009, doi: 10.1016/j.mencom.2009.09.014.

K. Fucke, S. A. Myz, T. P. Shakhtshneider, E. V. Boldyreva, and U. J. Griesser, “How good are the crystallisation methods for co-crystals? A comparative study of piroxicam,” New Journal of Chemistry, vol. 36, no. 10, p. 1969, 2012, doi: 10.1039/c2nj40093f.

A. G. Ogienko et al., “Cryosynthesis of Co-Crystals of Poorly Water-Soluble Pharmaceutical Compounds and Their Solid Dispersions with Polymers. The ‘Meloxicam–Succinic Acid’ System as a Case Study,” Crystal Growth & Design, vol. 18, no. 12, pp. 7401–7409, Nov. 2018, doi: 10.1021/acs.cgd.8b01070.

G. Bolla, B. Sarma, and A. K. Nangia, “Crystal engineering and pharmaceutical crystallization,” Hot Topics in Crystal Engineering, pp. 157–229, 2021, doi: 10.1016/b978-0-12-818192-8.00004-4.

R. K. Saxena, S. Saran, J. Isar, and R. Kaushik, “Production and Applications of Succinic Acid,” Current Developments in Biotechnology and Bioengineering, pp. 601–630, 2017, doi: 10.1016/b978-0-444-63662-1.00027-0.

R. E. Byers, F. H. Emerson, and H. C. Dostal, “The Effect of Succinic Acid-2,2-Dimethylhydrazide (SADH) and Other Growth Regulating Chemicals on Peach Fruit Maturation1,” Journal of the American Society for Horticultural Science, vol. 97, no. 3, pp. 420–423, May 1972, doi: 10.21273/jashs.97.3.420.

F. S. L. G. Delos Reyes et al., “The Search for the Elixir of Life: On the Therapeutic Potential of Alkaline Reduced Water in Metabolic Syndromes,” Processes, vol. 9, no. 11, p. 1876, Oct. 2021, doi: 10.3390/pr9111876.

E. Madrigal-Santillán, “Review of natural products with hepatoprotective effects,” World Journal of Gastroenterology, vol. 20, no. 40, p. 14787, 2014, doi: 10.3748/wjg.v20.i40.14787.

W. L. Chiou and S. Niazi, “Pharmaceutical Applications of Solid Dispersion Systems: Dissolution of Griseofulvin–Succinic Acid Eutectic Mixture,” Journal of Pharmaceutical Sciences, vol. 65, no. 8, pp. 1212–1214, Aug. 1976, doi: 10.1002/jps.2600650820.

M. A. Hassan and E. A. Aboutabl, “Griseofulvin,” Analytical Profiles of Drug Substances, pp. 583–600, 1981, doi: 10.1016/s0099-5428(08)60154-9.

H. Z. Lian, L. Mao, X. L. Ye, and J. Miao, “Simultaneous determination of oxalic, fumaric, maleic and succinic acids in tartaric and malic acids for pharmaceutical use by ion-suppression reversed-phase high performance liquid chromatography,” Journal of Pharmaceutical and Biomedical Analysis, vol. 19, no. 3–4, pp. 621–625, Mar. 1999, doi: 10.1016/s0731-7085(98)00101-0.

Mariya Leleka, Olha Zalis’ka, and Galyna Kozyr, “Screening Research of Pharmaceutical Compositions Based on Succinic Acid, Ascorbic Acid and Rutin,” Journal of Pharmacy and Pharmacology, vol. 4, no. 9, Sep. 2016, doi: 10.17265/2328-2150/2016.09.003.

A. G. Ogienko et al., “Cryosynthesis of Co-Crystals of Poorly Water-Soluble Pharmaceutical Compounds and Their Solid Dispersions with Polymers. The ‘Meloxicam–Succinic Acid’ System as a Case Study,” Crystal Growth & Design, vol. 18, no. 12, pp. 7401–7409, Nov. 2018, doi: 10.1021/acs.cgd.8b01070.

R. K. Saxena, S. Saran, J. Isar, and R. Kaushik, “Production and Applications of Succinic Acid,” Current Developments in Biotechnology and Bioengineering, pp. 601–630, 2017, doi: 10.1016/b978-0-444-63662-1.00027-0.

https://www.marketsandmarkets.com/MarketReports/succinic-acid

S. Gadkari, D. Kumar, Z. Qin, C. S. Ki Lin, and V. Kumar, “Life cycle analysis of fermentative production of succinic acid from bread waste,” Waste Management, vol. 126, pp. 861–871, May 2021, doi: 10.1016/j.wasman.2021.04.013.

C. Li et al., “Promising advancement in fermentative succinic acid production by yeast hosts,” Journal of Hazardous Materials, vol. 401, p. 123414, Jan. 2021, doi: 10.1016/j.jhazmat.2020.123414.

S. Thakur, J. Chaudhary, P. Singh, W. F. Alsanie, S. A. Grammatikos, and V. K. Thakur, “Synthesis of Bio-based monomers and polymers using microbes for a sustainable bioeconomy,” Bioresource Technology, vol. 344, p. 126156, Jan. 2022, doi: 10.1016/j.biortech.2021.126156.

J. M. Pinazo, M. E. Domine, V. Parvulescu, and F. Petru, “Sustainability metrics for succinic acid production: A comparison between biomass-based and petrochemical routes,” Catalysis Today, vol. 239, pp. 17–24, Jan. 2015, doi: 10.1016/j.cattod.2014.05.035.

R. N. R. Sulaiman and N. Othman, “Synergistic green extraction of nickel ions from electroplating waste via mixtures of chelating and organophosphorus carrier,” Journal of Hazardous Materials, vol. 340, pp. 77–84, Oct. 2017, doi: 10.1016/j.jhazmat.2017.06.060.

“BIO-SUCCINIC ACID: AN ENVIRONMENTFRIENDLY PLATFORM CHEMICAL,” International Journal of Environment and Health Sciences, vol. 2, no. 2, Jun. 2020, doi: 10.47062/1190.0202.01.

J. H. Ahn, Y.-S. Jang, and S. Yup Lee, “Succinic Acid,” Industrial Biotechnology, pp. 505–544, Nov. 2016, doi: 10.1002/9783527807833.ch17.

Y. S. Huh, Y.-S. Jun, Y. K. Hong, H. Song, S. Y. Lee, and W. H. Hong, “Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens,” Process Biochemistry, vol. 41, no. 6, pp. 1461–1465, Jun. 2006, doi: 10.1016/j.procbio.2006.01.020.

A. K. Chandel, V. K. Garlapati, S. P. Jeevan Kumar, M. Hans, A. K. Singh, and S. Kumar, “The role of renewable chemicals and biofuels in building a bioeconomy,” Biofuels, Bioproducts and Biorefining, vol. 14, no. 4, pp. 830–844, May 2020, doi: 10.1002/bbb.2104.

H. Hu et al., “Toward Biobased, Biodegradable, and Smart Barrier Packaging Material: Modification of Poly(Neopentyl Glycol 2,5-Furandicarboxylate) with Succinic Acid,” ACS Sustainable Chemistry & Engineering, vol. 7, no. 4, pp. 4255–4265, Jan. 2019, doi: 10.1021/acssuschemeng.8b05990

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.