Abstract
This work provides a historical overview of water storage tanks used for solar energy collection, with a focus on the impact of different geometric configurations on thermal performance and energy storage efficiency. The designs of cylindrical, spherical, rectangular and triangular tanks were reviewed to analyse their effects on thermal gradients, heat retention and energy storage capacity. Within the scope of nominal processes, the study primarily aimed to identify the factors influencing the choice of tank shape in terms of size, capacity and aspect ratio. Another key objective was to assess what enhances heat storage in the tank to improve thermal efficiency. Comparing cylindrical shapes to other shapes, such as spherical, rectangular, and triangular , it offered the optimal performance with the needed requirements for the objects that have a smaller surface area-to-capacity ratio in addition to the lower heat loss. Furthermore,when the tilt angle with horizontal axes of the storage tank was at 0°, the tanks’ ratio reduction had remarkable impact on thermal stratification . The results might provide valuable information for the thermal storage system’sdesign in solar water heating for improving thermal efficiency. This work provides the basis for research exploiting high-temperature solar energy storage technologies and their applications in building sustainable energy systems.
References
[1] K. Jana; A. Ray; M. Majoumerd; M. Assadi, S. De. Polygeneration as a future sustainable energy solution–A comprehensive review. Applied Energy 2017,202,88-111.
https://doi.org/10.1016/j.apenergy.2017.05.129
[2] M. Esen; A. Durmuş; A. Durmuş. Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Solar Energy 1998, 66,19-28.
https://doi.org/10.1016/S0038-092X(97)00104-7
[3] M. Smyth; P. Eames; B. Norton. Integrated collector storage solar water heaters. Renewable and Sustainable Energy Reviews 2006,10(6),503-538.
https://doi.org/10.1016/j.rser.2004.11.001
[4] V. Belessiotis; E. Papanicolaou. History of solar energy. Comprehensive Renewable Energy (Second Edition) 2012,3,118-136.
https://doi.org/10.1016/B978-0-12-819727-1.00190-4
[5] M. Islam; K. Sumathy; S. Khan. Solar water heating systems and their market trends. Renewable and Sustainable Energy Reviews 2013,17,1-25.
https://doi.org/10.1016/j.rser.2012.09.011
[6] C. Long. The Energy Crisis in 1970s Suburban Narratives. Running Out of Gas 2011,41(3), 342-369. https://doi.org/10.1353/crv.2011.0024
[7] M. Thirugnanasambandam; S. Iniyan; R. Goic. A review of solar thermal technologies. Renewable and Sustainable Energy Reviews 2010,14(1),312-322.
https://doi.org/10.1016/j.rser.2009.07.014
[8] M. Souliotis; R. Singh; S. Papaefthimiou; I.J. Lazarus; K. Andriosopoulos. Integrated Collector Storage Solar Water Heaters: Survey and Recent Developments. Energy Systems 2016,7,49-72.
https://doi.org/10.1007/s12667-014-0139-z
[9] M. Chaabane; H. Mhiri; Ph. Bournot. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with a storage tank equipped with radial fins of rectangular profile. Heat and Mass Transfer 2012,49.
https://doi.org/10.1007/s00231-012-1065-z
[10] M. Arslan; A. Igci. Thermal performance of a vertical solar hot water storage tank with a mantle heat exchanger depending on the discharging operation parameters. Solar Energy 2015,116,184-204. https://doi.org/0.1016/j.solener.2015.03.045
[11] A. Madhlopa; R. Mgawi; J. Taulo. Experimental study of temperature stratification in an integrated collector–storage solar water heater with two horizontal tanks. Solar Energy 2006, 80,989–1002.
https://doi.org/10.1016/j.solener.2005.06.019
[12] D. Qin; Z. Yu; T. Yang; S. Li; G. Zhang. Thermal performance evaluation of a new structure hot water tank integrated with phase change materials. Energy Procedia 2019,158,5034–5040.https://doi.org/10.1016/j.egypro.2019.01.659
[13] M. Smytha; J. Mondola; R. Muhumuzaa; A. Pugsleya; A. Zacharopoulosa; D. McLarnonb; C. Forzanoc; A. Buonomanod; A. Palombod. Experimental characterisation of different hermetically sealed horizontal. Solar Energy 2020,206,695-707.
https://doi.org/10.1016/j.solener.2020.06.056
[14] W. Gao; B. Liu; Y. Zhang; X. Ding; Q. Li; J. Wang. Effect of initial temperature of water in a solar hot water storage tank on the thermal stratification under the discharging mode. Renewable Energy 2023,212,994–1004.
https://doi.org/10.1016/j.renene.2023.05.102
[15] L. Bernardo; H. Davidsson; B. Karlsson. Retrofitting domestic hot water heaters for solar water heating systems in single-family houses in a cold climate: A theoretical analysis. Energies 2012, 5,4110-4131.
https://doi.org/10.3390/en5104110
[16] S. Yari; H. Safarzadeh; M. Bahiraei. Experimental study of phase change material performance as thermal insulation of a double-walled spherical tank under partial vacuum for storing solar energy. Energy Conversion and Management 2019,92,117317.
https://doi.org/10.1016/j.enconman.2023.117317
[17] G. Dolgun; A. Keçebaş; M. Ertürk; A. Daşdemir. Optimal insulation of underground spherical tanks for seasonal thermal energy storage applications. Journal of Energy Storage 2023, 69, 107865.
https://doi.org/10.1016/j.est.2023.107865
[18] J. Chung; S. Cho; Ch. Tae; H. Yoo. The effect of diffuser configuration on thermal stratification in a rectangular storage tank. Renewable Energy 2008,33(10),2236-2245.
https://doi.org/10.1016/j.renene.2007.12.013
[19] Y. Rashidov; B. Aytmuratov; B. Abdullaeva; and K. Aytbaev. Calculation and experimental study of water distributor of stratification heat accumulator of solar heating system. E3S Web of Conferences 2023, 383, 04013.
https://doi.org/10.1051/e3sconf/202338304013
[20] S. Ahmed; M. Khalid; M. Vaka; R. Walvekar; A. Numan; A. Rasheed; N. Mubarak. Recent progress in solar water heaters and solar collectors: A comprehensive review. Thermal Science and Engineering Progress 2021,25, 100981.
https://doi.org/10.1016/j.tsep.2021.100981
[21] M. El-Reedy. Steel and concrete storage tank. Chapter 4-Onshore Structural Design Calculations
Power Plant and Energy Processing Facilities. (Elsevier) 2017.
[22] K. Hudon; T. Merrigan; J. Burch; J. Maguire. Low-cost solar water heating research and development roadmap. NREL/TP-5500-54793 August, 2012. https://doi.org/10.2172/1050127
[23] V. Badescu. Optimal control of flow in solar collector systems with fully mixed water storage tanks. Energy Conversion and Management 2008, 49(2),169-184.
https://doi.org/10.1016/j.enconman.2007.06.022
[24] A. Mohamad. Integrated solar collector–storage tank system with thermal diode. Solar Energy 1997,61(3),211-218.
https://doi.org/10.1016/S0038-092X(97)00046-7
[25] Y. Rao; A. Somwanshi. A comprehensive review on integrated collector-storage solar water heaters. Materials Today: Proceedings 2022,63,15–26.
https://doi.org/10.1016/j.matpr.2021.12.424
[26] Y. Han; R. Wang; Y. Dai. Thermal stratification within the water tank. Renewable and Sustainable Energy Reviews 2009,13(5),1014-102.
https://doi.org/10.1016/j.rser.2008.03.001
[27] M. Rodríguez-Hidalgo; P. Rodríguez-Aumente; A. Lecuona; M. Legrand; R. Ventas. Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank. Applied Energy. 2012,97,897-906.
https://doi.org/10.1016/j.apenergy.2011.12.088
[28] K. Chang; A. Minardi; T. Clay. Parametric study of the overall performance of a solar hot water system. Solar Energy 1982, 29(6),513-521.
https://doi.org/10.1016/0038-092X(82)90059-7
[29] W. Villasmil; L. Fischer; J. Worlitschek. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renewable and Sustainable Energy Reviews 2019,103,71-84.
https://doi.org/10.1016/j.rser.2018.12.040
[30] A. Bonanos; E. Votyakov. Sensitivity analysis for thermocline thermal storage tank design. Renewable Energy 2016, 99,764-771.
https://doi.org/10.1016/j.renene.2016.07.052
[31] B. Kurşun; K. Ökten. Effect of rectangular hot water tank position and aspect ratio on thermal stratification enhancement. Renewable Energy 2017,116.
https://doi.org/10.1016/j.renene.2017.10.013
[32] W. He; L. Xue; B. Gorczyca; J. Nan; Z. Shi. Comparative analysis on flocculation performance in unbaffled square stirred tanks with different height-to-width ratios: Experimental and CFD investigations. Chemical Engineering Research and Design 2018,132,518-535.
https://doi.org/10.1016/j.cherd.2018.01.055
[33] C. Garnire; T. Muneer; J. Currie. Numerical and empirical evaluation of a novel building integrated collector storage solar water heater. Renewable Energy 2018,126,281-295.
https://doi.org/10.1016/j.renene.2018.03.041
[34] K. Çomakl; U. Çakır; M. Kaya; K. Bakirci. The relation of collector and storage tank size in solar heating systems. Energy Conversion and Management 2012,63,112-117.
https://doi.org/10.1016/j.enconman.2012.01.031
[35] J. Ji; J. Han; T. Chow; H. Yi; J. Lu; W. He; W. Sun. Effect of fluid flow and packing factor on energy performance of a wall-mounted hybrid photovoltaic/water-heating collector system. Energy and Buildings 2006,38(12)1380-1387.
https://doi.org/10.1016/j.enbuild.2006.02.010
[36] S. Fertahi; A. Jamil; A. Benbassou. Review on solar thermal stratified storage tanks (STSST): Insight on stratification studies and efficiency indicators. Solar Energy 2018,176,126-145.
https://doi.org/10.1016/j.solener.2018.10.028
[37] Y. Han; R. Wang; Y. Dai. Thermal stratification within the water tank. Renewable and Sustainable Energy Reviews 2009,13(5),1014-1026.
https://doi.org/10.1016/j.rser.2008.03.001
[38] K. Kumar; S. Singh. Investigating thermal stratification in a vertical hot water storage tank under multiple transient operations. Energy Reports 2021,7,7186-7199.
https://doi.org/10.1016/j.egyr.2021.10.088
[39] K. Reddy; N. Kaushika. Comparative study of transparent insulation materials cover systems for integrated-collector-storage solar water heaters. Solar Energy Materials and Solar Cells 1999,58(4),431-446.
https://doi.org/10.1016/S0927-0248(99)00018-5
[40] T. Ferhatbegovic; G. Zucker; P. Palensky. An unscented Kalman filter approach for the plant-model mismatch reduction in HVAC system model-based control. IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.
https://doi.org/10.1109/IECON.2012.6388685
[41] M. Bilardo; G. Fraisse; M. Pailha; E. Fabrizio. Modelling and performance analysis of a new concept of integral collector storage (ICS) with phase change material. Solar Energy 2019,183, 425-440. https://doi.org/10.1016/j.solener.2019.03.032
[42] P. van Schalkwyk; J. Engelbrecht; M. Booysen. Thermal stratification and temperature variation in horizontal electric water heaters: A characterisation platform. Energies 2022,15(8),2840.
https://doi.org/10.3390/en15082840
[43] R. Singh; I. Lazarus; M. Soulioti. Recent developments in integrated collector storage (ICS) solar water heaters: A review. Renewable and Sustainable Energy Reviews 2016, 54, 270-298.
https://doi.org/10.1016/j.rser.2015.10.006
[44] L. Juanicó. A new design of roof-integrated water solar collector for domestic heating and cooling. Solar Energy 2008,82(6),481-492.
https://doi.org/10.1016/j.solener.2007.12.007
[45] Y. Kohol´e; F. Fohagui; G. Tchuen. Flat-plate solar collector thermal performance assessment via energy, exergy and irreversibility analysis. Energy Conversion and Management:X 15, 100247. https://doi.org/10.1016/j.ecmx.2022.100247
[46] M. Ghamari. Solar wall technology and its impact on building performance. Energies 2024, 17,(5),1075. https://doi.org/10.3390/en17051075
[47] C. Ovalle; L. Nieves; H. Medrano; E. Paiva-Peredo. Intelligent photovoltaic system to maximize the capture of solar energy," Indonesian Journal of Electrical Engineering and Computer Science 2023,32(3),1557. https://doi.org/10.11591/ijeecs.v32.i3.pp1557-1568
[48] N. Mokhlif; M. Eleiwi; T. Yassen. Experimental investigation of a double glazing integrated solar water heater with corrugated absorber surface. Materials Today:Proceedings 2021,42,2742–2748. https://doi.org/10.1016/j.matpr.2020.12.714
[49] J. Fan; S. Furbo; H. Yue. Development of a hot water tank simulation program with improved prediction of thermal stratification in the tank. Energy Procedia 2015, 70,193 – 202.
https://doi.org/10.1016/j.egypro.2015.02.115
[50] J. Dragsted; S. Furbo; M. Dannemand; F. Bava. Thermal stratification built up in hot water tank with different inlet stratifiers. Solar Energy 2017,147,414-425. https://doi.org/10.1016/j.solener.2017.03.008
[51] M. Abokersh; M. Osman; O. El-Baz; M. El-Morsi; O. Sharaf. Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS). Wiley-Blackwell 2017,42(2),329-357. https://doi.org/10.1002/er.3765
[52] C. Ding; J. Pei; S. Wang; Y. Wang. Evaluation and comparison of thermal performance of latent heat storage units with shell-and-tube, rectangular, and cylindrical configurations. Applied Thermal Engineering 2023,218,119364.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Al-Khwarizmi Engineering Journal