Deep Learning Model for Prediction of Dementia Severity based on EEG Signals
pdf (الإنجليزية)

كيفية الاقتباس

Deep Learning Model for Prediction of Dementia Severity based on EEG Signals. (2024). مجلة الخوارزمي الهندسية, 20(4), 1-12. https://doi.org/10.22153/kej.2024.08.002

تواريخ المنشور

الإستلام

2024-03-27

النسخة النهائية

2024-07-03

الموافقة

2024-08-11

الملخص

This study aimed to determine variations in the electroencephalograms (EEGs) of 15 individuals who were diagnosed with mild cognitive impairment (MCI) following stroke, 5 individuals suffering from vascular dementia (VD) and 15 healthy normal control (NC) individuals who performed a working memory task. Conventional filters including notch and bandpass filters were utilised to remove noise from the EEG data. The proposed method comprises computing the estimates of the attention entropy (AttEn), bubble entropy (BubbEn) and symbolic dynamic entropy (SyDyEn) of univariate data sequence features. The long short-term memory (LSTM) deep learning neural network was used to automatically classify dementia severity through noninvasive EEG-based recordings. The LSTM classification result with AttEn exceeds an average of 88.9% than BubbEn and SyDyEn, with classification results of 69.2% and 77.7%, respectively. The analysis of the brain EEG-based dementia severity dataset suggests that AttEn could potentially serve as a biomarker for detecting dementia severity. AttEn can capture relevant patterns and features in the EEG data and may be indicative of the severity of dementia with LSTM RNN to differentiate patients with VD, patients with MCI and NC individuals.

pdf (الإنجليزية)

المراجع

J. Jeong, “EEG dynamics in patients with alzheimer’s disease,” Clinical neurophysiology, vol. 115, no. 7, pp. 1490–1505, 2004.

C. McVeigh and P. Passmore, “Vascular dementia: prevention and treatment,” Clinical interventions in aging, vol. 1, no. 3, pp. 229–235, 2006.

N. K. Al-Qazzaz, S. H. B. Ali, S. A. Ahmad, K. Chellappan, M. Islam, J. Escudero et al., “Role of EEG as biomarker in the early detection and classification of dementia,” The Scientific World Journal, vol. 2014, 2014.

N. K. Al-Qazzaz, S. H. Ali, S. A. Ahmad, S. Islam, and K. Mohamad, “Cognitive impairment and memory dysfunction after a stroke diagnosis: a post-stroke memory assessment,” Neuropsychiatric disease and treatment, pp. 1677–1691, 2014.

N. K. Al-Qazzaz, S. H. Ali, S. A. Ahmad, and S. Islam, “Cognitive assessments for the early diagnosis of dementia after stroke,” Neuropsychiatric disease and treatment, pp. 1743–1751, 2014.

N. K. Al-Qazzaz, S. H. M. Ali, S. Islam, S. Ahmad, and J. Escudero, “EEG wavelet spectral analysis during a working memory tasks in stroke-related mild cognitive impairment patients,” in International Conference for Innovation in Biomedical Engineering and Life Sciences. Springer, 2015, pp. 82–85.

N. K. Al-Qazzaz, S. Ali, M. S. Islam, S. A. Ahmad, and J. Escudero, “EEG markers for early detection and characterization of vascular dementia during working memory tasks,” in 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2016, pp. 347–351.

N. K. Al-Qazzaz, S. Ali, S. A. Ahmad, M. S. Islam, and M. I. Ariff, “Selection of mother wavelets thresholding methods in denoising multichannel EEG signals during working memory task,” in 2014 IEEE conference on biomedical engineering and sciences (IECBES). IEEE, 2014, pp. 214–219.

N. K. Al-Qazzaz, S. Hamid Bin Mohd Ali, S. A. Ahmad, M. S. Islam, and J. Escudero, “Selection of mother wavelet functions for multi-channel eeg signal analysis during a working memory task,” Sensors, vol. 15, no. 11, pp. 29015–29035, 2015.

J. Escudero, R. Hornero, D. Ab´asolo, and A. Ferna´ndez, “Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation,” Annals of biomedical engineering, vol. 39, no. 8, pp. 2274–2286, 2011.

N. K. Al-Qazzaz, S. H. M. Ali, and S. A. Ahmad, “Entropy-based eeg markers for gender identification of vascular dementia patients,” in 3rd International Conference for Innovation in Biomedical Engineering and Life Sciences: Proceedings of ICIBEL 2019, December 6-7, 2019, Kuala Lumpur, Malaysia. Springer, 2021, pp. 121–128.

N. K. Al-Qazzaz, S. H. B. M. Ali, S. A. Ahmad, and J. Escudero, “Optimal EEG channel selection for vascular dementia identification using improved binary gravitation search algorithm,” in International Conference for Innovation in Biomedical Engineering and Life Sciences. Springer, 2017, pp. 125–130.

N. K. Al-Qazzaz, S. H. B. M. Ali, S. A. Ahmad, M. S. Islam, and J. Escudero, “Discrimination of stroke-related mild cognitive impairment and vascular dementia using eeg signal analysis,” Medical & biological engineering & computing, vol. 56, pp. 137–157, 2018.

N. K. Al-Qazzaz, S. H. M. Ali, and S. A. Ahmad, “Differential evolution based channel selection algorithm on EEG signal for early detection of vascular dementia among stroke survivors,” in 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2018, pp. 239–244.

C. J. Huggins, J. Escudero, M. A. Parra, B. Scally, R. Anghinah, A. V. L. De Arau´jo, L. F. Basile, and D. Abasolo, “Deep learning of resting-state electroencephalogram signals for three-class classification of alzheimer’s disease, mild cognitive impairment and healthy ageing,” Journal of Neural Engineering, vol. 18, no. 4, p. 046087, 2021.

A. F. A. Rabea, S. A. Ahmad, A. C. Soh, A. J. Ishak, R. N. E. R. Adnan, N. K. Al-Qazzaz et al., “Driver’s fatigue classification based on physiological signals using rnn-lstm technique,” in 2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2022, pp. 280–285.

N. Subramanian, O. Elharrouss, S. Al-Maadeed, and M. Chowdhury, “A review of deep learning-based detection methods for covid-19,” Computers in Biology and Medicine, p. 105233, 2022.

T. A. Soomro, L. Zheng, A. J. Afifi, A. Ali, S. Soomro, M. Yin, and J. Gao, “Image segmentation for mr brain tumor detection using machine learning: A review,” IEEE Reviews in Biomedical Engineering, 2022.

I. Marin, T. Marasovi´c, and S. Gotovac, “Siamese network for contentbased image retrieval: Detection of alzheimer’s disease from neuroimaging data,” in 2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). IEEE, 2022, pp. 1–6.

L. A. Bugnon, R. A. Calvo, and D. H. Milone, “Dimensional affect recognition from hrv: An approach based on supervised som and elm,” IEEE Transactions on Affective Computing, vol. 11, no. 1, pp. 32–44, 2020.

Y. Isler, A. Narin, M. Ozer, and M. Perc, “Multi-stage classification of congestive heart failure based on short-term heart rate variability,” Chaos, Solitons & Fractals, vol. 118, pp. 145–151, 2019.

H.-H. Chao, C.-W. Yeh, C.-F. Hsu, L.-W. Hsu, and S.-C. Chi, “Multiscale entropy analysis with low-dimensional exhaustive search for detecting heart failure,” Appl. Sci., vol. 9, no. 17, p. 3496, 2019.

M. Shi, C. Zhan et al., “Renyi distribution entropy analysis of shortterm heart rate variability signals and its application in coronary artery disease detection,” Front. Physiol., vol. 10, 2019.

M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis of complex physiologic time series,” Phys. Rev. Lett., vol. 89, no. 6, p. 68102, 2002.

R. Clausius, The mechanical theory of heat: with its applications to the steam-engine and to the physical properties of bodies. J. van Voorst, 1867.

L. Boltzmann, “Weitere studien u¨ber das w¨armegleichgewicht unter gasmoleku¨len,” pp. 115–225, 1970.

J. W. Gibbs, Elementary principles in statistical mechanics developed with especial reference to the rational foundation of thermodynamics/by J. Willard Gibbs. C. Scribner, 1902.

M. Ferrario, M. G. Signorini, G. Magenes, and S. Cerutti, “Comparison of entropy-based regularity estimators: Application to the fetal heart rate signal for the identification of fetal distress,” IEEE Trans. Biomed. Eng., vol. 53, pp. 119–125, 2006.

M. Matilla-Garc´ıa, I. Morales, J. M. Rodr´ıguez, and M. Ruiz Mar´ın, “Selection of embedding dimension and delay time in phase space reconstruction via symbolic dynamics,” Entropy, vol. 23, no. 2, p. 221, 2021.

J. Yang, G. I. Choudhary, S. Rahardja, and P. Franti, “Classification of interbeat interval time-series using attention entropy,” IEEE Transactions on Affective Computing, 2020. [Online]. Available: https://doi.org/10.1109/TAFFC.2017.2784832

D. Klepl, F. He, M. Wu, D. Blackburn, and P. Sarrigiannis, “Adaptive gated graph convolutional network for explainable diagnosis of alzheimer’s disease using eeg data,” arXiv preprint arXiv:2304.05874, Apr 2023, accessed: May 26, 2023. [Online]. Available: https://arxiv.org/abs/2304.05874v1.

A. Shikalgar and S. Sonavane, “Hybrid deep learning approach for classifying alzheimer disease based on multimodal data,” in Advances in Intelligent Systems and Computing, vol. 1025, 2020, pp. 511–520.

S. Fouladi, A. Safaei, N. Mammone, F. Ghaderi, and M. Ebadi, “Efficient deep neural networks for classification of alzheimer’s disease and mild cognitive impairment from scalp eeg recordings,” Cognitive Computation, vol. 14, no. 4, pp. 1247–1268, Jun 2022.

M. Alessandrini, G. Biagetti, P. Crippa, L. Falaschetti, S. Luzzi, and C. Turchetti, “Eeg-based alzheimer’s disease recognition using robustpca and lstm recurrent neural network,” Sensors, vol. 22, no. 10, p. 3696, 2022.

M. Amini, M. Pedram, A. Moradi, and M. Ouchani, “Diagnosis of alzheimer’s disease by time-dependent power spectrum descriptors and convolutional neural network using eeg signal,” Computational and Mathematical Methods in Medicine, vol. 2021, 2021.

U. Senturk, I. Yucedag, and K. Polat, “Repetitive neural network (rnn) based blood pressure estimation using ppg and ecg signals,” in ISMSIT 2018 - 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedings, Dec 2018.

U. Senturk, K. Polat, and I. Yucedag, “A non-invasive continuous cuffless blood pressure estimation using dynamic recurrent neural networks,” Applied Acoustics, vol. 170, p. 107534, Dec 2020.

G. Sharma, A. Parashar, and A. Joshi, “Dephnn: A novel hybrid neural network for electroencephalogram (eeg)-based screening of depression,” Biomedical Signal Processing and Control, vol. 66, p. 102393, Apr 2021.

M. F. Folstein, S. E. Folstein, and P. R. McHugh, ““mini-mental state”: a practical method for grading the cognitive state of patients for the clinician,” Journal of psychiatric research, vol. 12, no. 3, pp. 189–198, 1975.

T. Smith, N. Gildeh, and C. Holmes, “The montreal cognitive assessment: validity and utility in a memory clinic setting,” The Canadian Journal of Psychiatry, vol. 52, no. 5, pp. 329–332, 2007.

N. K. Al-Qazzaz, M. K. Sabir, S. H. B. M. Ali, S. A. Ahmad, and K. Grammer, “Multichannel optimization with hybrid spectral-entropy markers for gender identification enhancement of emotional-based eegs,” IEEE Access, vol. 9, pp. 107059–107078, 2021.

N. K. Al-Qazzaz, S. H. M. Ali, and S. A. Ahmad, “Comparison of the effectiveness of aica-wt technique in discriminating vascular dementia EEGs,” in 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS). IEEE, 2018, pp. 109–112.

G. Manis, M. Aktaruzzaman, and R. Sassi, “Bubble entropy: An entropy almost free of parameters,” IEEE Transactions on Biomedical Engineering, vol. 64, pp. 2711–2718, 2017. [Online]. Available: https://doi.org/10.1109/TBME.2017.2664105

J. Wang, T. Li, R. Xie, X. M. Wang, and Y. Y. Cao, “Fault feature extraction for multiple electrical faults of aviation electro-mechanical actuator based on symbolic dynamics entropy,” in 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, Sep 2015, pp. 1–6.

V. Rajagopalan and A. Ray, “Symbolic time series analysis via waveletbased partitioning,” Signal processing, vol. 86, no. 11, pp. 3309–3320, 2006.

Y. Li, Y. Yang, G. Li, M. Xu, and W. Huang, “A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mrmr feature selection,” Mechanical Systems and Signal Processing, vol. 91, pp. 295–312, 2017. [Online]. Available: https://doi.org/10.1016/j.ymssp.2016.12.040

N. K. Al-Qazzaz, S. Ali, S. A. Ahmad, and J. Escudero, “Classification enhancement for post-stroke dementia using fuzzy neighborhood preserving analysis with qr-decomposition,” in 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, 2017, pp. 3174–3177.

D. Schlembach, W. L. Maner, R. E. Garfield, and H. Maul, “Monitoring the progress of pregnancy and labor using electromyography,” Eur. J. Obstet. Gynecol. Reprod. Biol., vol. 144, pp. 2–8, 2009.

J. Mas-Cabo, Y. Ye-Lin, J. Garcia-Casado, A. D´ıaz-Martinez, A. Perales-Marin, R. Monfort-Ortiz, A. Roca-Prats, A. Lo´pez-Corral,´ and G. Prats-Boluda, “Robust characterization of the uterine myoelectrical activity in different obstetric scenarios,” Entropy, vol. 22, p. 743, 2020.

J. Mas-Cabo, G. Prats-Boluda, J. Garcia-Casado, J. Alberola-Rubio, R. Monfort-Ortiz, C. Martinez-Saez, A. Perales, and Y. Ye-Lin, “Electrohysterogram for ann-based prediction of imminent labor in women with threatened preterm labor undergoing tocolytic therapy,” Sensors, vol. 20, p. 2681, 2020.

S. M. Pincus, “Approximate entropy as a measure of system complexity,” Proc. Natl. Acad. Sci. USA, vol. 88, pp. 2297–2301, 1991.

H. Tan, S. Xie, H. Zhou, W. Ma, C. Yang, and J. Zhang, “Sensible multiscale symbol dynamic entropy for fault diagnosis of bearing,” International Journal of Mechanical Sciences, vol. 256, p. 108509, 2023.

Y. Mi, A. Lin, D. Gu, X. Zhang, and X. Huang, “Bubble transfer spectral entropy and its application in epilepsy eeg analysis,” Communications in Nonlinear Science and Numerical Simulation, vol. 110, p. 106294, 2022.

Author(s), “Detection of sudden cardiac death by a comparative study of heart rate variability in normal and abnormal heart conditions,” Journal Name, vol. Volume, no. Number, p. Page range, Year.

M. W. Flood and B. Grimm, “Entropyhub: An open-source toolkit for entropic time series analysis,” PloS one, vol. 16, no. 11, p. e0259448, 2021.

F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with lstm,” Neural computation, vol. 12, no. 10, pp. 2451–2471, 2000.

K. Greff, R. K. Srivastava, J. Koutn´ık, B. R. Steunebrink, and J. Schmidhuber, “Lstm: A search space odyssey,” IEEE transactions on neural networks and learning systems, vol. 28, no. 10, pp. 2222–2232, 2016.

Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Deep bidirectional and unidirectional lstm recurrent neural network for network-wide traffic speed prediction,” arXiv preprint arXiv:1801.02143, 2018.

Creative Commons License

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.

الحقوق الفكرية (c) 2024 مجلة الخوارزمي الهندسية