Physical and Mechanical Properties of Synthesized Doped Nanoferrite
PDF

Keywords

Nanoferrite
Y2O3
density
splitting strength
Vickers micro hardness

How to Cite

Physical and Mechanical Properties of Synthesized Doped Nanoferrite. (2017). Al-Khwarizmi Engineering Journal, 12(2), 10-17. https://alkej.uobaghdad.edu.iq/index.php/alkej/article/view/292

Abstract

Nanoferrite materials have been synthesized by sol-gel auto combustion method. The effect of doping different percentages of Y2O3 (0.34 µm) on the physical and mechanical properties of selected mixed ferrite [(Li2.5Fe0.5) 0.9(Co4Fe2O4) 0.1] by adding 10% Cobalt ferrite was studied. Physical properties (i.e. .density, porosity and water absorption) were affected by the doping, where the density increased about 32% at 6 wt% Y2O3, while porosity has a drastically decreased about 80% at 6% Y2O3 and has a correlation effect on the mechanical properties(Splitting  tensile strength and Vickers microhardnss). The fracture strength at 1 % wt. of  Y2O3 has doubled value of the undoped sample and then decreased. The same behavior shows with the testing of Vickers micro hardness.SEM ( Scanning electron microscopy ) micrographs revealed that the microstructure of the fracture surface of the samples consist of detached approximately closely packed particles and also showed the formation of micro agglomerated particles with some voids . By doping with Y2O3 the pores decreased and a dense material obtained

PDF

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.