Investigation the Effect of Process Variables on the Formability of Parts Processed by Single Point Incremental Forming
pdf

How to Cite

Investigation the Effect of Process Variables on the Formability of Parts Processed by Single Point Incremental Forming. (2019). Al-Khwarizmi Engineering Journal, 14(2), 58-70. https://doi.org/10.22153/kej.2018.12.003

Publication Dates

Abstract

Incremental sheet metal forming process is an advanced flexible manufacturing process to produce various 3D products without using dedicated tool as in conventional metal forming. There are a lot of process parameters that have effect on this process, studying the effect of some parameters on the strain distributions of the product over the length of deformation is the aim of this study.

In order to achieve this goal, three factors (tool forming shape, feed rate and incremental step size) are examined depending on three levels on the strain distributions over the wall of the product. Strain measurement was accomplished by using image processing technique using MATALB program. The significance of the control factors are explored using two statistical methods:  analysis of variance (ANOVA) and main effect plot (MEP). All experiments were carried out on a sheet of Aluminum alloy (Al1050) with thickness 0.9 mm by using 3 axes CNC machine to produce frustum pyramid product. The result showed that the feed rate is a parameter that has large effect on the values of the effective strain percentage contribution of (42.86% and 51.42%), respectively, and is followed by step size (25.1% and 30.60%) percentage contributions and finally the tool shape with (21.79% and 10.54%) on the (55° and 45°) wall angle, respectively. The maximum and minimum average effective strain computed on the 55◦ forming angle were (0.580 and 0.399), respectively. Finally, the maximum and minimum average effective strain computed on the 45◦ forming angle were equal to (0.412 and 0.324), respectively.

pdf

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.