Heating and Melting Model Induced by Laser Beam in Solid Material
PDF

How to Cite

Heating and Melting Model Induced by Laser Beam in Solid Material. (2019). Al-Khwarizmi Engineering Journal, 4(3), 98-107. https://alkej.uobaghdad.edu.iq/index.php/alkej/article/view/599

Abstract

An analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by  laser irradiation is in good agreement with numerical results.

PDF

References

[1] El-Adawi MK, El-Shehawey EF. Heating a slab induced by a time-dependent laser irradiation—An exact solution. J. Appl Phys 1986; 60 (7): 2250–5.
[2] Hassan AF, El-Nicklawy MM, El-Adawi MK. A general problem of pulse laser heating of a slab. Opt Laser Technol 1993; 25 (3): 155–62.
[3] Rantala TT, Levoska J. A numerical simulation method for the laser-induced temperature distribution. J. Appl. Phys. 1989; 65 (12): 4475–9.
[4] Armon E, Zvirin Y, Laufer G. Metal drilling with a CO2 laser beam. I. Theory. J Appl. Phys 1989; 65(12): 4995–5002.
[5] Kar A, Mazumder J. Two-dimensional model for material damage due to melting and vaporization during laser irradiation. J. Appl. Phys. 1990; 68: 3884–91.
[6] V. A. Karkhin, V. A. Lopota, and N. O. Palova. Effect of phase transformations on residual stresses in laser welding. Welding International 2003 17 (8) 645–649
[7] Han GuoMing, Zhao Jian, Li JianQang. Dynamic simulation of the temperature field of stainless steel laser welding. School of Material Science and Engineering, Tianjin University, China, 8 June 2005.
[8] S.A. Tsirkas, P. Papanikos, Th. Kermanidis. Numerical simulation of the laser welding process in butt-joint specimens. J Materials Processing Technology 2003; 134:59-69.
[9] Justin D. Francis. Welding Simulations of Aluminum Alloy Joints by Finite Element Analysis. Master of Science in Aerospace Engineering April 2002 Blacksburg, Virginia
[10] A. Anca, A. Cardona, and J.M. Risso. 3D-Thermo-Mecanical Simulation of Welding Processes. Centro Internacional de M´etodos Computacionales en Ingenier´ıa (CIMEC), Bariloche, Argentina, November 2004.
[11] D. Berglund, L.E. Lindgren and A. Lundbäck. Three-Dimensional Finite Element Simulation of Laser Welded Stainless Steel Plate. Computer Aided Design, Luleå University of Technology, 97187 Luleå, Sweden, 2004.
[12] Armon E, Zvirin Y, Laufer G. Metal drilling with a CO2 laser beam. II. Experiment. J. Appl. Phys. 1989; 65 (12): 5003–8.

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.