الخصائص الميكانيكية وتحليل زرع الأطراف الصناعية المتكاملة عظامياً عبرعظمة الساق

المؤلفون

  • Saif Abbas Department of Prosthetic and Orthotic Engineering, College of Engineering, University of Al-Nahrain, Baghdad, Iraq
  • Jumaa Chiad Department of Prosthetic and Orthotic Engineering, College of Engineering, University of Al-Nahrain, Baghdad, Iraq
  • Ayad Takhakh Department of Prosthetic and Orthotic Engineering, College of Engineering, University of Al-Nahrain, Baghdad, Iraq
  • Kadhim Resan Department of Materials Engineering, College of Engineering, University of Al-Mustansiriyah, Baghdad, Iraq
  • Abdullah Fatlawi Specialist Prosthetists and Orthotists, Head of Orthotics and Prosthetics Department at Sidra Medicine and Research Center, State of Qatar
  • alaq saad مسلمة

DOI:

https://doi.org/10.22153/kej.2025.09.005

الكلمات المفتاحية:

Keywords: Implants; osseointegration; prosthetics; bone attachment; Ti–13Nb–13Zr alloy.

الملخص

الإجراء الذي يتم من خلاله إدخال غرسة معدنية في العظم المتبقي من خلال جراحة طرف مبتور يُعرف بالتكامل العظمي. يمكن ربط هذه الغرسة بأطراف اصطناعية خارجية. الخصائص الميكانيكية لـ Ti-13Nb. تم فحص التطبيق المحتمل لسبيكة 13Zr في الأطراف الاصطناعية المتكاملة عبر الساق بعناية. أظهرت السبيكة قوة ميكانيكية عالية بمتوسط قوة عتبة بلغت 482 ميجا باسكال، وقوة شد قصوى بلغت 551.843 ميجا باسكال، وتمدد بنسبة 19.66%. ومن خلال اختبار الضغط، أظهر المادة أنها مقاومة للأحمال الضاغطة، حيث أظهرت قوة عتبة تبلغ 700 ميجا باسكال وقوة ضغط تبلغ 1010 ميجا باسكال. تم إثبات قدرة السبيكة على تحمل التحميل الدوري من خلال اختبارات التعب، حيث أظهرت في النهاية انخفاضًا في مقاومة التعب. أظهرت التحليلات باستخدام طريقة العناصر المحدودة (FEM) توزيعًا موحدًا للإجهاد، وعوامل أمان، وتشوهًا قليلًا لمجموعة من أحجام الغرسات. ضمان السلامة الهيكلية والوظيفية. تفتح هذه النتائج إمكانيات جديدة لتحسين تصميم الأطراف الصناعية واستخدامها في مجال الهندسة الطبية الحيوية من خلال إظهار ملاءمة السبيكة المحتملة لتطبيقات الأطراف الصناعية المتكاملة مع العظم.

التنزيلات

تنزيل البيانات ليس متاحًا بعد.

المراجع

[1] K. Hagberg and R. Branemark, "Consequences of nonvascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems," Prosthet. Orthot. Int., vol. 25, pp. 186–194, 2001.

[2] Abbod, Esraa A. Challoob, Shireen H. Resan, Kadhim K. Salman, Ali A. Abdulrehman, Mohammed Ali and Muhammad, Ahmed K. "Innovative Carbon Fiber-Reinforced Polypropylene for Enhanced Manufacturing of Lower-Limb Prosthetic Sockets" Annales de Chimie: Science des Materiaux (2025) https://doi.org/10.18280/acsm.490204

[3] Penn-barwell JG. Outcomes in lower limb amputation following trauma: a systematic review and metaanalysis. Injury. 2011; 42(12):1474-9. https://doi.org/10.1016/j.injury.2011.07.005

[4] Tang J, Jiang L, Mcgrath M, Bader D, Laszczak P, Moser D, et al. Analysis of lower limb prosthetic socket interface based on stress and motion measurements. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2022; 236(9):1349-56. https://doi.org/10.1177/09544119221110712

[5] L. J. Marks and J. W. Michael, "Science, medicine, and the future: artificial limbs," BMJ, vol. 323, pp. 732–735, 2001.

[6] S. M. Abbas, J. S. Chiad, and A. M. Takhakh, "Study and Analysis of Below Knee Osseointegration Prosthesis," J. Eng. Sustain. Dev., vol. 29, no. 2, pp. 190–197, 2025.

[7] Hoellwarth JS, Tetsworth K, Rozbruch SR, Handal MB, Coughlan A, Al Muderis M (2020) Osseointegration for Amputees: Current Implants, Techniques, and Future Directions. JBJS Rev.;8(3): e0043.https://doi.org/10.2106/jbjs.rvw.19.00043

[8] K. Demet, N. Martinet, F. Guillemin, J. Paysant, and J. M. André, "Health related quality of life and related factors in 539 persons with amputation of upper and lower limb," Disabil. Rehabil., vol. 25, pp. 480–486, 2003.

[9] K. Hagberg and R. Branemark, "Consequences of non-vascular transfemoral amputation: a survey of quality of life, prosthetic use and problems," Prosthet. Orthot. Int., vol. 25, pp. 186–194, 2001.

[10] L. E. Pezzin, T. R. Dillingham, and E. J. MacKenzie, "Rehabilitation and the long-term outcomes of persons with trauma-related amputations," Arch. Phys. Med. Rehabil., vol. 81, pp. 292–300, 2000.

[11] L. E. Pezzin, T. R. Dillingham, E. J. MacKenzie, P. Ephraim, and P. Rossbach, "Use and satisfaction with prosthetic limb devices and related services," Arch. Phys. Med. Rehabil., vol. 85, pp. 723–729, 2004.

[12] J. Sullivan, M. Uden, K. P. Robinson, and S. Sooriakumaran, "Rehabilitation of the trans-femoral amputee with an osseointegrated prosthesis: the United Kingdom experience," Prosthet. Orthot. Int., vol. 27, pp. 114–120, 2003.

[13] S. M. Abbas, A. M. Takhakh, and J. S. Chiad, "Study and Analysis of Ti13Nb13Zr Implants in the Above Knee Osseointegration Prosthesis," Al-Qadisiyah J. Eng. Sci., 2024.

[14] K K Resan , E A Abbod and T K Al-Hamdi " Prosthetic Feet: A Systematic Review of Types, Design, and Characteristics" AIP Conference Proceedings 2806, 060005 (2023)

https://doi.org/10.1063/5.0163345

[15] R. Branemark, P.-I. Brånemark, B. Rydevik, and R. R. Myers, "Osseointegration in skeletal reconstruction and rehabilitation: a review," J. Rehabil. Res. Dev., vol. 38, pp. 175–181, 2001.

[16] S. M. Abbas, A. M. Takhakh, and J. S. Chiad, "Investigating the Future of Prosthetics Using Osseointegration Tec nology Review," Al-Nahrain Journal for Engineering Sciences NJES vol. 26 no. 3, pp.186-196, 2023.

[17] R. Adell, B. Eriksson, U. Lekholm, P. I. Branemark, and T. Jemt, "Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws," Int. J. Oral Maxillofac. Implants, vol. 5, pp. 347–359, 1990.

[18] R. Branemark, P. I. Branemark, B. Rydevik, and R. R. Myers, "Osseointegration in skeletal reconstruction and rehabilitation: a review," J. Rehabil. Res. Dev., vol. 38, pp. 175–181, 2001.

[19] K. Hagberg, R. Branemark, B. Gunterberg, and B. Rydevik, "Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up," Prosthet. Orthot. Int., vol. 32, pp. 29–41, 2008.

[20] S. M. Abbas, J. S. Chiad, and A. M. Takhakh, "Analysis of the transtibial osseointegration prosthesis," in Proc. Int. Middle Eastern Simulation and Modelling Conf. (MESM), 2024, pp. 76–80.

[21] R. Branemark, B. Berlin, B. Rydevik, and K. Hagberg, "A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective study of 51 patients," Bone Joint J., vol. 96-B, pp. 106–113, 2014.

[22] K. Hagberg and R. Branemark, "One hundred patients treated with osseointegrated transfemoral amputation prostheses—rehabilitation perspective," J. Rehabil. Res. Dev., vol. 46, pp. 331–344, 2009.

[23] K. Hagberg, R. Branemark, B. Gunterberg, and B. Rydevik, "Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up," Prosthet. Orthot. Int., vol. 32, pp. 29–41, 2008.

[24] K. Hagberg, O. Hansson, and R. Branemark, "Outcome of percutaneous osseointegrated prostheses for patients with transfemoral amputations at two-year follow-up," Arch. Phys. Med. Rehabil., vol. 95, pp. 2120–2127, 2014.

[25] K. Hagberg, R. Branemark, B. Gunterberg, and B. Rydevik, "Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up," Prosthet. Orthot. Int., vol. 32, pp. 29–41, 2008.

[26] K. Hagberg, R. Branemark, and B. Rydevik, "Percutaneous osseointegrated prostheses in the treatment of patients with transfemoral amputation: an update," Bone Joint J., vol. 97-B, no. 1, pp. 110–115, 2015.

[27] R. Branemark, B. Berlin, K. Hagberg, and B. Rydevik, "A novel percutaneous osseointegrated prosthesis for the treatment of patients with transfemoral amputations: a prospective study of 51 patients," Bone Joint J., vol. 96-B, pp. 106–113, 2014.

[28] K. Hagberg, R. Branemark, B. Gunterberg, and B. Rydevik, "Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up," Prosthet. Orthot. Int., vol. 32, pp. 29–41, 2008.

[29] R. Branemark and K. Hagberg, "Osseointegration in amputees," in Encyclopedia of Biomedical Engineering, R. Narayan, Ed. Elsevier, 2019, pp. 333–346.

[30] R. Branemark, P. Berlin, and B. Rydevik, "A novel percutaneous osseointegrated prosthesis for the treatment of patients with transfemoral amputations: a prospective study of 51 patients," Bone Joint J., vol. 96-B, pp. 106–113, 2014.

[31] American Society for Testing and Materials, Standard Test Methods for Tension Testing of Metallic Materials, ASTM Designation: E8/E8M − 16a, 2016.

[32] American Society for Testing and Materials, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature, ASTM Designation: E9 – 89a (Reapproved 2000).

[33] S. Swanson, M. Freeman, and W. Day, "The fatigue properties of human cortical bone," Med. Biol. Eng., vol. 9, pp. 23–32, 1971.

[34] T. Lee, "Variation in Mechanical Properties of Ti-13Nb-13Zr Depending on Annealing Temperature," Appl. Sci., vol. 10, no. 7896, 2020.

[35] P. Bansal, G. Singh, and H. S. Sidhu, "Improvement of surface properties and corrosion resistance of Ti13Nb13Zr titanium alloy by plasma-sprayed HA/ZnO coatings for biomedical applications," Mater. Chem. Phys., vol. 257, no. 123738, 2021.

[36] L. Zhou, T. Yuan, R. Li, J. Tang, G. Wang, K. Guo, and J. Yuan, "Densification, microstructure evolution and fatigue behavior of Ti-13Nb-13Zr alloy processed by selective laser melting," Powder Technol., vol. 342, pp. 11–23, 2019.

[37] S. Irarrázaval, J. A. Ramos-Grez, L. I. Pérez, P. Besa, and A. Ibáñez, "Finite element modeling of multiple density materials of bone specimens for biomechanical behavior evaluation," SN Appl. Sci., vol. 3, no. 776, 2021.

[38] M. A. ter Wee, J. G. G. Dobbe, G. S. Buijs, A. J. Kievit, M. U. Schafroth, M. Maas, L. Blankevoort, and G. J. Streekstra, "Load-induced deformation of the tibia and its effect on implant loosening detection," Sci. Rep., vol. 13, no. 21769, 2023.

[39] S. A. Kokz, A. M. Mohsen, K. K. Nile, and Z. B. Khaleel, "Inductive 3D numerical modelling of the tibia bone using MRI to examine von Mises stress and overall deformation," Open Eng., vol. 14, 2024.

[40] R. A. Shanto, M. Khalil, S. Z. Sultana, E. Z. Epsi, S. K. Bose, M. S. Latif, T. Siddiquee, and S. A. Sumi, "Variation of mid shaft antero-posterior and transverse diameter of femur in Bangladeshi people," Mymensingh Med. J., vol. 33, no. 1, pp. 234–238, Jan. 2024.

التنزيلات

منشور

12/01/2025

كيفية الاقتباس

الخصائص الميكانيكية وتحليل زرع الأطراف الصناعية المتكاملة عظامياً عبرعظمة الساق. (2025). مجلة الخوارزمي الهندسية, 21(4), 1-12. https://doi.org/10.22153/kej.2025.09.005

المؤلفات المشابهة

1-10 من 603

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.