تقدير سرعة موجة النبضة: دراسة مقارنة لتقنية حلقة الضغط-سرعة مقابل اختبار الشد والامتثال
pdf (الإنجليزية)

الكلمات المفتاحية

Bramwell–Hill equation; Compliance testing; Moens–Korteweg equation; PU-loop; Tensile testing.

كيفية الاقتباس

تقدير سرعة موجة النبضة: دراسة مقارنة لتقنية حلقة الضغط-سرعة مقابل اختبار الشد والامتثال. (2025). مجلة الخوارزمي الهندسية, 21(3), 106-117. https://doi.org/10.22153/kej.2025.08.003

الملخص

سرعة موجة النبض (c) هي متغير مهم في مجال ديناميكا الدم ودراسة خصائص الجهاز القلبي الوعائي. وهي مرتبطة ارتباطًا مباشرًا بمرونة تجويف الشريان وترتبط عكسيًا بمرونة تجويف الشريان. حلقة PU للقياسات المتزامنة للسرعة (U) والضغط (P) المستخدمة لحسابها. تستفيد هذه التقنية من الخطية بين U و P خلال الفترة المبكرة من انقباض القلب حيث لا توجد موجة خلفية منعكسة بسبب تشعبات الشرايين و / أو انسدادها. تم اختبار التحقق من صحة طريقة حلقة PU باستخدام اختبار الشد والمطاوعة. تم إجراء اختبار الشد باستخدام خلية تحميل لتقدير معامل مرونة يونغ (E) للأنبوب المرن. يستخدم الأخير لحساب c وفقًا لمعادلة Moens-Korteweg. تم إجراء اختبار الامتثال تحت ضغط ثابت لتقدير العلاقة بين P والحجم (V) أثناء النبض. تنبأت هذه العلاقة بدورات الضغط والانكماش للتحقق من صحة الاختبار الذي طُبّق على تجويف الأنبوب المرن المعني. وبالتالي، يُستخدم التغير في حجم التجويف الداخلي الناتج عن التغير في P لحساب قابلية تمدد تجويف الأنبوب المرن، ومن ثمّ، فإن c تُطابق معادلة برامويل-هيل. (ج) وفقًا لاختباري الامتثال والشد، كانت 19.5±0.05 متر/ثانية و19.5 متر/ثانية على التوالي، ووفقًا لتقنية حلقة الضغط-سرعة، كانت 20±0.25 متر/ثانية. وبالتالي، كانت قيمة c المحسوبة باستخدام تقنية حلقة الضغط-سرعة متوافقة تمامًا مع هذه القيم المحسوبة فيما يتعلق باختباري الامتثال والشد؛ وقد تم التحقق من صحة منهجية حلقة الضغظ-سرعة في تقييم c.

pdf (الإنجليزية)

المراجع

[1] Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D., Pannier, B., Vlachopoulos, C., Wilkinson, I. and Struijker-Boudier, H., 2006. Expert consensus document on arterial stiffness: methodological issues and clinical applications. European Heart Journal, 27(21), pp.2588–2605. https://doi.org/10.1093/eurheartj/ehl254.

[2] Miyatani, M., Yasuda, T., Fukumura, K., Iida, H., Yamasoba, T., Sato, Y. and Ishii, N., 2009. Pulse Wave Velocity for Assessment of Arterial Stiffness. Journal of Clinical Hypertension, 11(7), pp.411–417. https://doi.org/10.1111/j.1751-7176.2009.00139.x.

[3] Kim, H.L. and Kim, S.H., 2019. Pulse Wave Velocity in Atherosclerosis. Frontiers in Cardiovascular Medicine, 6, p.41. https://doi.org/10.3389/fcvm.2019.00041.

[4] Negoita, M., Hughes, A.D., Parker, K.H. and Khir, A.W., 2018. A method for determining local pulse wave velocity in human ascending aorta from sequential ultrasound measurements of diameter and velocity. Physiological Measurement, 39(11), p.114009. https://doi.org/10.1088/1361-6579/aae8a0.

[5] Manoj, R., Raj, K.V., Nabeel, P.M., Thomas, A., Karthikeyan, P., Suresh, S., Joseph, J. and Jayaraj, J., 2025. Measurement of pressure dependent variations in local pulse wave velocity within a cardiac cycle from forward travelling pulse waves. Scientific Reports, 15, p.3066. https://doi.org/10.1038/s41598-025-87143-z.

[6] Janjua, G.M.W., McLaughlin, J., Finlay, D.D., Guldenring, D. and Hadia, R., 2017. Novel non-invasive Pressure-Volume Loop measurement for local Pulse Wave Velocity estimation. 44th Computing in Cardiology Conference (CinC 2017), Rennes, France. https://doi.org/10.22489/CinC.2017.217-385.

[7] Segers, P., Swillens, A., Taelman, L. and Vierendeels, J., 2014. Wave reflection leads to over- and underestimation of local wave speed by the PU- and QA-loop methods: theoretical basis and solution to the problem. American Journal of Physiology-Heart and Circulatory Physiology, 306(3), pp.H426–H433. https://doi.org/10.1152/ajpheart.00751.2013.

[8] Van Den Bos, G.C., Wesseling, K.H., De Wit, B. and Settels, J.J., 2003. Automating the determination of wave speed using the PU-loop method. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 4, pp.3700–3703.

[9] Arias, D.C., Vignon-Clementel, I.E., Figueroa, C.A., Taylor, C.A. and Jansen, K.E., 2019. A 1D arterial network model analysis. Journal of Biomechanics, 83, pp.1–8. https://doi.org/10.1016/j.jbiomech.2019.01.002.

[10] Aguado-Sierra, J., Alastruey, J., Davies, J., Nordsletten, D., Brown, M., Parker, K.H. and Figueroa, C.A., 2006. Arterial pulse wave velocity in coronary arteries. IEEE Transactions on Medical Imaging, 25(10), pp.1284–1293. https://doi.org/10.1109/TMI.2006.881311.

[11] Ma, Y., Li, Y., Wang, Y., Wang, Y., Wang, Y. and Wang, Y., 2018. Relation between blood pressure and pulse wave velocity in the general population. Proceedings of the National Academy of Sciences, 115(52), pp.13289–13294. https://doi.org/10.1073/pnas.1814392115.

[12] Tripathi, A., Khir, A.W. and Parker, K.H., 2017. A Pulse Wave Velocity Based Method to Assess the Mean Arterial Pressure. Frontiers in Physiology, 8, p.855. https://doi.org/10.3389/fphys.2017.00855.

[13] Spronck, B., Heusinkveld, M.H.A., Hughes, A.D., Heethaar, R.M. and Westerhof, B.E., 2023. 2024 Recommendations for Validation of Noninvasive Arterial Stiffness Measurement Devices. Journal of Hypertension, 41(1), pp.1–10. https://doi.org/10.1097/HJH.0000000000003271.

[14] Wilkinson, I.B., McEniery, C.M., Schillaci, G., Boutouyrie, P., Segers, P., Donald, A., Chowienczyk, P., Parker, K.H., Laurent, S. and Cockcroft, J.R., 2020. Uses of Arterial Stiffness in Clinical Practice. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(3), pp.666–672. https://doi.org/10.1161/ATVBAHA.120.313130.

[15] Salvi, P., Grillo, A., Pini, A., Alonzo, A., Balbarini, A., Parati, G. and Mancia, G., 2022. Non-Invasive Assessment of Arterial Stiffness: Pulse Wave Velocity. Journal of Clinical Medicine, 11(8), p.2225. https://doi.org/10.3390/jcm11082225.

[16] Cho, J., Lee, J., Park, K. and Kim, S., 2020. A comparative study of brachial–ankle pulse wave velocity. MDPI Sensors, 20(7), 2073.

[17] Karaki, M., Watanabe, T., Yoshida, K., Ito, S. and Takahashi, H., 2025. The validity of carotid-femoral pulse wave velocity in the assessment of arterial stiffness. Journal of Applied Physiology, 128(1), pp.73–80. https://doi.org/10.1152/japplphysiol.00073.2024.

[18] Mourad, J.J., Blacher, J., Blin, P., Hoeks, A. and Safar, M.E., 2001. Creatinine clearance, pulse wave velocity, carotid compliance and essential hypertension. Kidney International, 59(5), pp.1834–1841. https://doi.org/10.1046/j.1523-1755.2001.0590051834.x.

[19] Zhou, Y., Wang, Y., Zhang, L., Li, X., Zhang, Y. and Wang, Y., 2020. P125 Local Pulse Wave Velocity in the Arterial Tree. Atlantis Press.

[20] Vappou, J., Luo, J. and Konofagou, E.E., 2010. Pulse Wave Imaging for Noninvasive and Quantitative Measurement of Arterial Stiffness in vivo. American Journal of Hypertension, 23(4), pp.393–398. https://doi.org/10.1038/ajh.2010.8.

[21] Aimagambetova, B., Ilyasova, N., Kadyrova, I., Khamzina, Y., Kadyrov, A., Khamzina, Y., Kadyrov, A. and Khamzina, Y., 2024. Arterial stiffness measured by pulse wave velocity correlated with cognitive function in elderly patients. BMC Neurology, 24, p.390. https://doi.org/10.1186/s12883-024-03905-8.

[22] Gheysen, L., De Backer, J., De Wilde, D., De Backer, J. and De Wilde, D., 2023. Pulse wave velocity: A clinical measure to aid material characterization of vascular tissues. Journal of the Mechanical Behavior of Biomedical Materials, 137, p.105519. https://doi.org/10.1016/j.jmbbm.2022.105519.

[23] Roberts, P.A., Davies, J.E., Hughes, A.D., Parker, K.H. and Francis, D.P., 2015. Real-time aortic pulse wave velocity measurement during exercise stress testing. Journal of Biomechanics, 48(5), pp.847–853. https://doi.org/10.1016/j.jbiomech.2015.01.013.

[24] Bogatu, L.I., Ding, Z., Li, Y., Wang, Y. and Duan, Y., 2020. A modelling framework for assessment of arterial stiffness using pulse wave velocity. Computer Methods and Programs in Biomedicine, 190, p.105362. https://doi.org/10.1016/j.cmpb.2020.105362.

[25] Woodman, R.J., Kingwell, B.A., Beilin, L.J., Hamilton, S.E., Dart, A.M. and Watts, G.F., 2005. Assessment of central and peripheral arterial stiffness. American Journal of Hypertension, 18(2), pp.249–254. https://doi.org/10.1016/j.amjhyper.2004.07.023.

[26] Salvi, P., Magnani, E., Valbusa, F., Agnoletti, D., Alecu, C. and Benetos, A., 2008. Comparative study of methodologies for pulse wave velocity. PubMed, 18528411.

[27] Bramwell, J.C. and Hill, A.V., 1922. The velocity of the pulse wave in man. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 93(652), pp.298–306. https://doi.org/10.1098/rspb.1922.0022.

[28] Korteweg, D.J., 1878. Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren. Annalen der Physik und Chemie, 241(12), pp.525–542.

[29] Khir, A.W., O’Brien, A., Gibbs, J.S.R. and Parker, K.H., 2001. Determination of wave speed and separation of waves in arteries. Journal of Biomechanics, 34(9), pp.1145–1155. https://doi.org/10.1016/S0021-9290(01)00076-8.

[30] Hacham, W. S., Abdulla, N. N., Al-Ammri, A. S., and Khir, A. W., 2015. Wave speed and reflections proximal to aneurism and stenosis of flexible tubes, Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, Milan, Italy, pp.1009-1012, https://doi.org/10.1109/EMBC.2015.7318535.

[31] ASTM International, 2021. ASTM D412-16: Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension, West Conshohocken, PA: ASTM International.

[32] International Organization for Standardization, 1998. ISO 9276-1: Representation of results of particle size analysis–Part1: Graphical representation, Geneva: ISO.

Creative Commons License

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.

الحقوق الفكرية (c) 2025 مجلة الخوارزمي الهندسية