تحسين تجزئة البلوك تشين في أمن بيانات الرعاية الصحية عن طريق  إنترنت الأشياء باستخدام خوارزمية الرابيت (Rabbit)

المؤلفون

  • Khalid Jadaa Department of Computer Engineering, College of Engineering, University of Diyala, Diyala, Iraq
  • Aymen Badr College of Medicine, University of Diyala, Diyala, Iraq
  • Waleed Hussein Al-Zahraa College of Medicine-University of Basrah, Basrah, Iraq
  • Latifah Kamarudin Department of Computer and Communication Engineering, University Malaysia Perlis, Perlis, Malaysia

DOI:

https://doi.org/10.22153/kej.2025.10.001

الكلمات المفتاحية:

healthcare; hashing; medical internet of things; security; cloud computing; blockchain

الملخص

أدى ظهور تقنية البلوكتشين إلى إطلاق العديد من المبادرات في مختلف القطاعات. وعلى الرغم من ارتباط تقنية البلوكتشين في بداياتها بالقطاع المالي، إلا أنها أصبحت تُستخدم الآن في مجالات متعددة مثل الرعاية الصحية، وإنترنت الأشياء (IoT). وتعد دالة الهاش (Hash Function) أحد المكونات الأساسية في بنية البلوكتشين، إلا أن كفاءتها الحسابية محدودة نسبيا. ولمعالجة هذه المشكلة، يقترح هذا البحث نهجا جديدا لتحسين خوارزمية الهاش باستخدام دالة الرابيت (Rabbit) بطول 256 بت. وقد تم اختيار خوارزمية تشفير خفيفة الوزن لأداء وظيفة الهاش، وتم تحويل بنيتها إلى خوارزمية أكثر كفاءة من حيث الأداء الحسابي وأمان البيانات. وتظهر النتائج التجريبية أن النموذج المقترح يعزز من أمن بيانات ومعلومات المرضى، مما يزيد من الموثوقية لدى مرضى والمؤسسات الصحية التي تستخدم تقنية البلوكتشين.

التنزيلات

تنزيل البيانات ليس متاحًا بعد.

المراجع

[1] M. K. Thukral, "Emergence of blockchain-technology application in peer-to-peer electrical-energy trading: A review," Clean Energy, vol. 5, no. 1, pp. 104–123, 2021, doi: 10.1093/ce/zkaa033.

[2] S.-Y. Lin et al., "A survey of application research based on blockchain smart contract," Wireless Networks, vol. 28, no. 2, pp. 635–690, 2022, doi: 10.1007/s11276-021-02874-x.

[3] A. Adiyanto and R. Febrianto, "Authentication of transaction process in e-marketplace based on blockchain technology," Aptisi Transactions on Technopreneurship (ATT), vol. 2, no. 1, pp. 68–74, 2020, doi: 10.34306/att.v2i1.71.

[4] B. Düdder et al., "Event-based supply chain network modeling: Blockchain for good coffee," Frontiers in Blockchain, 2022, doi: 10.3389/fbloc.2022.846783.

[5] W. Viriyasitavat and D. Hoonsopon, "Blockchain characteristics and consensus in modern business processes," J. Ind. Inf. Integr., vol. 13, pp. 32–39, 2019, doi: 10.1016/j.jii.2018.07.004

[6] V. Gramoli, "From blockchain consensus back to Byzantine consensus," Future Generation Computer Systems, vol. 107, pp. 760–769, 2020, doi: 10.1016/j.future.2017.09.023.

[7] A. Kumar, R. Liu, and Z. Shan, "Is blockchain a silver bullet for supply chain management? Technical challenges and research opportunities," Decision Sciences, vol. 51, no. 1, pp. 8–37, 2020, doi: 10.1111/deci.12396.

[8] C. C. Agbo and Q. H. Mahmoud, "Comparison of blockchain frameworks for healthcare applications," Internet Technol. Lett., vol. 2, no. 5, p. e122, 2019, doi: 10.1002/itl2.122.

[9] S. Chen et al., "Study and implementation on the application of blockchain in electronic evidence generation," Forensic Sci. Int.: Digit. Invest., vol. 35, p. 301001, 2020, doi: 10.1016/j.fsidi.2020.301001.

[10] Z. E. Rasjid et al., "Implementation of Rail Fence Cipher and Myszkowski Algorithms and Secure Hash Algorithm (SHA-256) for Security and Detecting Digital Image Originality," in Proc. 2022 Int. Conf. Informatics, Multimedia, Cyber and Information Syst. (ICIMCIS), pp. 207–212, 2022, doi: 10.1109/ICIMCIS56303.2022.10017975.

[11] Y. Liu et al., "Optical image encryption algorithm based on hyper-chaos and public-key cryptography," Optics & Laser Technology, vol. 127, p. 106171, 2020, doi: 10.1016/j.optlastec.2020.106171.

[12] C. Stoll, U. Gallersdörfer, and L. Klaaßen, "Climate impacts of the metaverse," Joule, vol. 6, no. 12, pp. 2668–2673, 2022, doi: 10.1016/j.joule.2022.10.013.

[13] NOVO, Oscar. Blockchain meets IoT: An architecture for scalable access management in IoT. IEEE internet of things journal, 2018, 5.2:1184-1195.

DOI: 10.1109/JIOT.2018.2812239

[14] S. Guo et al., "Blockchain meets edge computing: Stackelberg game and double auction based task offloading for mobile blockchain," IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5549–5561, 2020, doi: 10.1109/TVT.2020.2982000.

[15] M. A. Bouras et al., "IoT-CCAC: a blockchain-based consortium capability access control approach for IoT," PeerJ Comput. Sci., vol. 7, p. e455, 2021, doi: 10.7717/peerj-cs.455.

[16] S. Fu et al., "Cooperative computing in integrated blockchain-based internet of things," IEEE Internet Things J., vol. 7, no. 3, pp. 1603–1612, 2019, doi: 10.1109/JIOT.2019.2948144.

[17] B. W. Aboshosha, M. M. Zayed, H. S. khalifa, and R. A. Ramadan, “Enhancing Internet of Things security in healthcare using a blockchain-driven lightweight hashing system,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 14, no. 1, May 2025, doi: https://doi.org/10.1186/s43088-025-00644-8.

[18] F. Hanif, U. Waheed, R. Shams, and A. Shareef, “GAHBT: Genetic Based Hashing Algorithm for Managing and Validating Health Data Integrity in Blockchain Technology,” Blockchain in Healthcare Today, vol. 6, no. 2, Feb. 2023, doi: https://doi.org/10.30953/bhty.v6.244.

[19] S. J. Basha et al., "Security enhancement of digital signatures for blockchain using EdDSA algorithm," in Proc. 2021 3rd Int. Conf. Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), pp. 274–278, 2021, doi: 10.1109/ICICV50876.2021.9388411.

[20] K. Ashritha, M. Sindhu, and K. V. Lakshmy, "Redactable blockchain using enhanced chameleon hash function," in Proc. 2019 5th Int. Conf. Advanced Computing & Communication Systems (ICACCS), pp. 323–328, 2019, doi: 10.1109/ICACCS.2019.8728524.

[21] Y. Tian et al., "Policy-based chameleon hash for blockchain rewriting with black-box accountability," in Proc. Annu. Comput. Security Applications Conf., pp. 813–828, 2020, doi: 10.1145/3427228.3427247.

[22] Jesús Soto-Cruz, E. Ruiz-Ibarra, J. Vázquez-Castillo, A. Espinoza-Ruiz, A. Castillo-Atoche, and J. Mass-Sanchez, “A Survey of Efficient Lightweight Cryptography for Power-Constrained Microcontrollers,” Technologies, vol. 13, no. 1, pp. 3–3, Dec. 2024, doi: https://doi.org/10.3390/technologies13010003.

[23] P. S. Suryateja and K. Venkata Rao, “A Survey on Lightweight Cryptographic Algorithms in IoT,” Cybernetics and Information Technologies, vol. 24, no. 1, pp. 21–34, Mar. 2024, doi: https://doi.org/10.2478/cait-2024-0002.

[24] A. Sevin and Ü. Çavuşoğlu, “Design and Performance Analysis of a SPECK-Based Lightweight Hash Function,” Electronics, vol. 13, no. 23, p. 4767, Dec. 2024, doi: https://doi.org/10.3390/electronics13234767.

[25] A. L. A. Fonsêca et al., “Blockchain in Health Information Systems: A Systematic Review,” International Journal of Environmental Research and Public Health, vol. 21, no. 11, p. 1512, Nov. 2024, doi: https://doi.org/10.3390/ijerph21111512.

[26] A. Arif, M. Hussain, and C. P. Subbe, “Blockchain: What is the use case for physicians in 2024? A rapid review of the literature,” Future Healthcare Journal, vol. 11, no. 1, p. 100005, Sep. 2024, doi: https://doi.org/10.1016/j.fhj.2024.100005.

[27] N. F. Mufidah and Hilal Hudan Nuha, “Performance and Security Analysis of Lightweight Hash Functions in IoT,” Jurnal Informatika Jurnal Pengembangan IT, vol. 9, no. 3, pp. 264–270, Dec. 2024, doi: https://doi.org/10.30591/jpit.v9i3.7633.

[28] B. B. Gupta and M. Quamara, "An overview of Internet of Things (IoT): Architectural aspects, challenges, and protocols," Concurrency Computat.: Pract. Exper., vol. 32, no. 21, p. e4946, 2020, doi: 10.1002/cpe.4946.

[29] P. Kietzmann et al., "A performance study of crypto-hardware in the low-end IoT," Cryptology ePrint Archive, 2021. [Online]. Available: https://ia.cr/2021/058.

[30] R. B. Gandara and M. Alaydrus, "Analysis of the IEEE 802.15.4 Protocol with Rabbit Encryption Algorithm for Industrial Applications in Oil and Gas Sector," in Proc. 2019 16th Int. Conf. Quality in Research (QIR), pp. 1–5, 2019, doi: 10.1109/QIR.2019.8898287.

[31] J. Daemen and V. Rijmen, The Design of Rijndael: AES — The Advanced Encryption Standard. New York, NY, USA: Springer, 2013. doi: 10.1007/978-3-662-04722-4.

[32] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers, “The SIMON and SPECK lightweight block ciphers,” in Proc. 52nd Annual Design Automation Conf. (DAC), San Francisco, CA, USA, Jun. 2015, pp. 1–6. doi: 10.1145/2744769.2747946.

[33] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-lightweight block cipher,” in Cryptographic Hardware and Embedded Systems – CHES 2007 (Lecture Notes in Computer Science, vol. 4727), P. Paillier and I. Verbauwhede, Eds. Berlin, Heidelberg: Springer, 2007, pp. 450–466. doi: 10.1007/978-3-540-74735-2_31

[34] M. El-Hajj, H. Mousawi, and A. Fadlallah, “Analysis of lightweight cryptographic algorithms on IoT hardware platform,” Future Internet, vol. 15, no. 2, p. 54, Feb. 2023. doi: 10.3390/fi15020054.

[35] S. Ahmad, S. Mehfuz, and J. Beg, "Hybrid cryptographic approach to enhance the mode of key management system in cloud environment," J. Supercomput., 2022, pp. 1–37, doi: 10.1007/s11227-022-04964-9.

[36] V. I. Korzhik et al., "Information theoretically secure key sharing protocol executing with constant noiseless public channels," Math. Vopr. Kibernet., vol. 12, no. 3, pp. 125–141, 2021, doi: 10.4213/mvk378.

[37] P. S. Nakhate and R. T. Pansare, "CS 237 Project Paper – PII Data Security in Software Systems," Univ. California, Irvine, 2022. [Online]. Available: https://ics.uci.edu/cs237/projects2022/5_report.pdf.

[38] O. A. Khashan, R. Ahmad, and N. M. Khafajah, "An automated lightweight encryption scheme for secure and energy-efficient communication in wireless sensor networks," Ad Hoc Netw., vol. 115, p. 102448, 2021, doi: 10.1016/j.adhoc.2021.102448.

[39] K. S. Garewal, "Merkle trees," in Practical Blockchains and Cryptocurrencies, Apress, 2020, pp. 137–148, doi: 10.1007/978-1-4842-5893-4.

[40] U. Chelladurai and S. Pandian, "Hare: A new hash-based authenticated reliable and efficient modified Merkle tree data structure to ensure integrity of data in the healthcare systems," J. Ambient Intell. Humaniz. Comput., 2021, doi: 10.1007/s12652-021-03085-0.

[41] Y. Yang et al., "Fast wireless sensor for anomaly detection based on the data stream in an edge-computing-enabled smart greenhouse," Digit. Commun. Netw., vol. 8, no. 4, pp. 498–507, 2022, doi: 10.1016/j.dcan.2021.11.004.

[42] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein, The BLAKE2 cryptographic hash and message authentication code (MAC), RFC 7693, Aug. 2015. doi: 10.17487/RFC7693.

[43] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede, “SPONGENT: the design space of lightweight cryptographic hashing,” IEEE Transactions on Computers, vol. 62, no. 10, pp. 2041–2053, Aug. 2012, doi: 10.1109/tc.2012.196.

التنزيلات

منشور

12/01/2025

كيفية الاقتباس

تحسين تجزئة البلوك تشين في أمن بيانات الرعاية الصحية عن طريق  إنترنت الأشياء باستخدام خوارزمية الرابيت (Rabbit). (2025). مجلة الخوارزمي الهندسية, 21(4), 45-64. https://doi.org/10.22153/kej.2025.10.001

المؤلفات المشابهة

1-10 من 57

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.