ايجاد بعد وموقع الجسم في نظام روبوت القنطرة والناقل: مراجعة

المؤلفون

  • Hayder Saadi Department of Automated Manufacturing Engineering, Al-khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
  • Nazar kais ALKARKHI Department of Automated Manufacturing Engineering, Al-khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
  • Wisam Abbood Department of Automated Manufacturing Engineering, Al-khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
  • Somer Nacy Department of Mechanical Engineering, San Diego State University, California, United States

DOI:

https://doi.org/10.22153/kej.2025.04.012

الكلمات المفتاحية:

Gantry robot; Dimensions; Location; Sensors; Vision; Conveyor system

الملخص

الروبوتات ذات الرافعات الجسرية، والمعروفة أيضًا باسم الروبوتات الديكارتية أو الروبوتات الخطية، هي أنظمة صناعية آلية تتحرك على طول مسارات خطية، مما يمكنها من إنشاء غلاف ثلاثي الأبعاد للمساحة التي تعمل فيها. يتمتع هذا النوع من الروبوتات بعملية تكوين موحدة لأنه يمكن أن يحتوي على مجموعات متعددة من المحاور، مثل X وY وZ. يبحث الروبوت ذو الرافعات الجسرية عن العناصر ويختارها من مواقع متعددة، ثم يضعها بدقة على الناقل لمزيد من المعالجة أو النقل النهائي. يتيح هذا التكامل تدفق المواد المستمر والآلي، مما يزيد من الإنتاجية والكفاءة الإجمالية في عمليات التصنيع. أصبح تحديد أبعاد الجسم والمواقع في مثل هذه الأنظمة أمرًا حيويًا في التحكم في العملية، وتعزيز الإنتاجية، والدقة في التصميم والتصنيع. تقدم مقالة المراجعة هذه معرفة مفيدة حول الروبوتات ذات الرافعات الجسرية ونظام الناقل وخلفيتها التاريخية. كما تم الإبلاغ عن دراسة استقصائية للأبحاث الحديثة حول مزايا وعيوب الروبوتات ذات الرافعات الجسرية. علاوة على ذلك، يتم تقديم دراسة استقصائية حول قياس أبعاد الأشياء وتحديد مواقعها باستخدام أجهزة الاستشعار والكاميرات في الروبوتات ذات الرافعات الجسرية. تتناول أغلب الأعمال في الأدبيات اكتشاف الجسم باستخدام تكنولوجيا الرؤية والمستشعرات، إلا أن استخدام مستشعرات الليزر لم يحظى باهتمام كبير ويحتاج إلى مزيد من التركيز في الأعمال المستقبلية.

التنزيلات

تنزيل البيانات ليس متاحًا بعد.

المراجع

[1] K. Uçar and H. E. Koçer, "Determination of Angular Status and Dimensional Properties of Objects for Grasping with Robot Arm," IEEE Lat. Amer. Trans., vol. 21, no. 2, pp. 335–343, Feb. 2023, doi: 10.1109/TLA.2023.10015227.

[2] L. W. Cheng, S. W. Liu, and J. Y. Chang, "Design of an Eye-in-Hand Smart Gripper for Visual and Mechanical Adaptation in Grasping," Appl. Sci., vol. 12, no. 10, p. 5024, May 2022, doi: 10.3390/app12105024.

[3] G. S. Sharath, N. Hiremath, and G. Manjunatha, "Design and Analysis of a Gantry Robot for a Pick and Place Mechanism with Arduino Mega 2560 Microcontroller and Processed Using Pythons," Mater. Today: Proc., vol. 45, pp. 377–384, 2021, doi: 10.1016/j.matpr.2020.11.965.

[4] G. Oliver, P. Gil, J. F. Gomez, and F. Torres, "Towards Footwear Manufacturing 4.0: Shoe Sole Robotic Grasping in Assembling Operations," Int. J. Adv. Manuf. Technol., vol. 114, pp. 811–827, May 2021, doi: 10.1007/s00170-021-06697-0.

[5] C. C. Wong, M. Y. Chien, R. J. Chen, H. Aoyama, and K. Y. Wong, "Moving Object Prediction and Grasping System of a Robot Manipulator," IEEE Access, vol. 10, pp. 20159–20172, 2022, doi: 10.1109/ACCESS.2022.3151717.

[6] C. Canali et al., "An Automatic Assembly Parts Detection and Grasping System for Industrial Manufacturing," in Proc. 2014 IEEE Int. Conf. Autom. Sci. Eng. (CASE), Taipei, Taiwan, Aug. 2014, pp. 215–220, doi: 10.1109/CoASE.2014.6899329.

[7] D. Shang, Y. Wang, Z. Yang, J. Wang, and Y. Liu, "Study on Comprehensive Calibration and Image Sieving for Coal-Gangue Separation Parallel Robot," Appl. Sci., vol. 10, no. 20, p. 7059, Oct. 2020, doi: 10.3390/app10207059.

[8] X. Huang et al., "Real-Time Grasping Strategies Using Event Camera," J. Intell. Manuf., vol. 33, no. 2, pp. 593–615, Feb. 2022, doi: 10.1007/s10845-021-01887-9.

[9] J. G. Campos and D. S. Esterán, "New Motion Control Machine Elements Representation for Mechatronic Education," Procedia Manuf., vol. 38, pp. 686–693, 2019, doi: 10.1016/j.promfg.2020.01.092.

[10] R. Mattone, M. Divona, and A. Wolf, "Sorting of Items on a Moving Conveyor Belt. Part 2: Performance Evaluation and Optimization of Pick-and-Place Operations," Robot. Comput. Integr. Manuf., vol. 16, no. 2–3, pp. 81–90, Apr. 2000, doi: 10.1016/S0736-5845(99)00041-1.

[11] R. Andriansyah, L. F. P. Etman, I. J. Adan, and J. E. Rooda, "Design and Analysis of an Automated Order-Picking Workstation," J. Simul., vol. 8, no. 2, pp. 151–163, Apr. 2014, doi: 10.1057/jos.2013.24.

[12] S. Thatere, P. Arora, Y. Sharma, R. Kumar, and R. Mishra, "Design and Implementation of a Gantry Robot for Pick and Place Mechanism with Obstacle Detection using Programmable Logic Controller," HCTL Open Int. J. Technol. Innov. Res., vol. 20, May 2016.

[13] D. Bargiotas, A. Ktena, C. Manasis, and O. Ladoukakis, "A Scalable Low-Cost Automated Storage & Retrieval System," in Proc. 16th Int. Conf. Syst. Signals Image Process., Chalkida, Greece, Jun. 2009, pp. 1–4, doi: 10.1109/IWSSIP.2009.5367724.

[14] R. Williamson, P. Goodall, S. Hayward, C. Hinde, P. Kane, and A. West, "Application of Predictive Maintenance Techniques to Low Failure Rate Gantry Cable Track Systems," SSRN, Jun. 2024. doi: 10.2139/ssrn.4851296.

[15] K. Sarware, A. Namdeo, A. Dwivedi, A. Shukla, P. Soni, and V. Chaturvedi, "Automated Pick and Throw Robotic Arm from Conveyer Belt," Int. Res. J. Eng. Technol. (IRJET), vol. 7, no. 6, pp. 3519–3523, Jun. 2020.

[16] E. B. Manurung, "Gantry Robot System Checkers Player," ADI J. Recent Innov., vol. 5, no. 1Sp, pp. 9–19, Sep. 2023, doi: 10.34306/ajri.v5i1Sp.911.

[17] M. Imtiaz, Y. Qiao, and B. Lee, "Comparison of Two Reinforcement Learning Algorithms for Robotic Pick and Place with Non-Visual Sensing," Int. J. Mech. Eng. Robot. Res., vol. 10, no. 10, pp. 526–535, Oct. 2021, doi: 10.18178/ijmerr.10.10.526-535.

[18] R. A. Jarvis, "A Simple Hand/Eye Experimental Set-Up for Computer Vision Research," Computer, vol. 10, no. 9, pp. 65–69, Sep. 1977, doi: 10.1109/C-M.1977.217864.

[19] F. J. Lin, P. H. Chou, C. S. Chen, and Y. S. Lin, "Three-Degree-of-Freedom Dynamic Model-Based Intelligent Nonsingular Terminal Sliding Mode Control for a Gantry Position Stage," IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 971–985, Oct. 2012, doi: 10.1109/TFUZZ.2012.2191412.

[20] C. Y. Chen, Y. C. Wu, C. W. Huang, and P. W. Hsueh, "The Introduction of Precision Positioning and Compensation Technology in Gantry-Type Platform," in Proc. 2011 First Int. Conf. Robot, Vis. Signal Process., Kaohsiung, Taiwan, Nov. 2011, pp. 94–97, doi: 10.1109/RVSP.2011.72.

[21] L. Johannesson, V. Berbyuk, and T. Brogårdh, "Gantry-Tau–a New Three Degrees of Freedom Parallel Kinematic Robot," in Parallel Kinematic Machines in Research and Practice; The 4th Chemnitz Parallel Kinematics Seminar, Chemnitz, Germany, 2004, pp. 731–734.

[22] Y. Suzuki, K. Koyama, A. Ming, and M. Shimojo, "Grasping Strategy for Moving Object Using Net-Structure Proximity Sensor and Vision Sensor," in Proc. 2015 IEEE Int. Conf. Robot. Autom. (ICRA), Seattle, WA, USA, May 2015, pp. 1403–1409, doi: 10.1109/ICRA.2015.7139373.

[23] T. A. Bennett, H. Emerson, F. J. Miller, and E. C. Soper, "Discussion: ‘A Unique Belt Conveyor’," Trans. ASME, vol. 31, pp. 158–160, 1909.

[24] J. H. Lim, "Automatic Battery Module Swapping Station for Autonomous Mobile Robots," Ph.D. dissertation, Universiti Tunku Abdul Rahman, 2024.

[25] S. Vasudevan et al., "Machine Vision and Robotics for Primary Food Manipulation and Packaging: A Survey," IEEE Trans. Ind. Informat., vol. 20, no. 6, pp. 6362-6379, Jun. 2024, doi:10.1109/ACCESS.2024.3479781.

[26] C. T. Freeman, P. L. Lewin, E. Rogers, and J. D. Ratcliffe, "Iterative Learning Control Applied to a Gantry Robot and Conveyor System," Trans. Inst. Meas. Control, vol. 32, no. 3, pp. 251–264, Jun. 2010, doi: 10.1177/014233120910415.

[27] J. V. Kujala, T. J. Lukka, and H. Holopainen, "Picking a Conveyor Clean by an Autonomously Learning Robot," 2015, doi:10.48550/ARXIV.1511.07608.

[28] H. M. Hameed, K. A. Al Amry, and A. T. Rashid, "The Automatic Storage and Retrieval System: An Overview," Int. J. Comput. Appl., vol. 178, no. 39, pp. 1–6, Feb. 2019, doi: 10.5120/ijca2019919603.

[29] H. G. Rudresh and P. Shubha, "Colour Sensor Based Object Sorting Robot," Int. Res. J. Eng. Technol. (IRJET), vol. 4, no. 8, pp. 1913–1916, Aug. 2017.

[30] A. A. Kaundanya, "Development of Open-Source Gantry-Plus Robot Systems for Plant Science Research," Ph.D. dissertation, Virginia Tech, 2024.

[31] Q. T. Pham et al., "Using a Yolov8-Based Object Detection Model for an Automatic Garbage Sorting System," J. Adv. Res. Appl. Mech., vol. 126, no. 1, pp. 24–32, Jul. 2024, doi: 10.37934/aram.126.1.2432.

[32] C. J. Wu and C. C. Tsai, "Localization of an Autonomous Mobile Robot Based on Ultrasonic Sensory Information," J. Intell. Robot. Syst., vol. 30, pp. 267–277, Mar. 2001, doi: 10.1023/A:1008154910876.

[33] M. B. Alatise and G. P. Hancke, "A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods," IEEE Access, vol. 8, pp. 39830–39846, 2020, doi: 10.1109/ACCESS.2020.2975643.

[34] I. Konukseven and B. Kaftanoğlu, "Multisensor Controlled Robot System for Recognizing and Tracking Moving Multiple Objects," J. Robot. Syst., vol. 16, no. 11, pp. 651–665, 1999, doi: 10.1002/(SICI)1097-4563(199911)16:11<651::AID-ROB4>3.0.CO;2-N.

[35] A. Zeng et al., "Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching," Int. J. Robot. Res., vol. 41, no. 7, pp. 690–705, Jun. 2022, doi: 10.1109/ICRA.2018.8461044.

[36] P. Liu et al., "Pick–and–Place Trajectory Planning and Robust Adaptive Fuzzy Tracking Control for Cable–Based Gangue–Sorting Robots with Model Uncertainties and External Disturbances," Machines, vol. 10, no. 8, p. 714, Aug. 2022, doi: 10.3390/machines10080714.

[37] M. McTaggart et al., "Mechanical Design of a Cartesian Manipulator for Warehouse Pick and Place," 2017, doi: 10.48550/arXiv.1710.00967.

[38] J. Černohorský and D. Lindr, "Laboratory Gantry Robot Design and Control," in Proc. 13th Int. Carpathian Control Conf. (ICCC), Podbanske, Slovakia, May 2012, pp. 86–90, doi: 10.1109/CarpathianCC.2012.6228621.

[39] Y. Huang, R. Chiba, T. Arai, T. Ueyama, and J. Ota, "Robust Multi-Robot Coordination in Pick-and-Place Tasks Based on Part-Dispatching Rules," Robot. Auton. Syst., vol. 64, pp. 70–83, Feb. 2015, doi: 10.1016/j.robot.2014.10.018.

[40] P. Wang, H. Ma, Y. Zhang, X. Cao, X. Wu, X. Wei, and W. Zhou, "Trajectory Planning for Coal Gangue Sorting Robot Tracking Fast-Mass Target under Multiple Constraints," Sensors, vol. 23, no. 9, p. 4412, May 2023, doi: 10.3390/s23094412.

[41] N. Hanson et al., "PROSPECT: Precision Robot Spectroscopy Exploration and Characterization Tool," 2024, doi: 10.1109/IROS58592.2024.10802210.

[42] T. Kiyokawa, J. Takamatsu, and S. Koyanaka, "Challenges for Future Robotic Sorters of Mixed Industrial Waste: A Survey," IEEE Trans. Autom. Sci. Eng., vol. 21, no. 1, pp. 1023–1040, Jan. 2024, doi: 10.1109/TASE.2022.3221969.

[43] A. Soetedjo, M. I. Ashari, and C. Ardiles, "Development of Industrial Control Training Module Using Distance and Color Sensors for Detecting Objects," Int. J. Eng. Manag., vol. 1, no. 1, pp. 1–8, Jul. 2017.

[44] K. Lewczuk, "The Study on the Automated Storage and Retrieval System Dependability," Eksploat. i Niezawodn. – Maint. Reliab., vol. 23, no. 4, pp. 645–655, 2021, doi: 10.17531/ein.2021.4.13.

[45] Y. D. Ku, J. H. Yang, H. Y. Fang, W. Xiao, and J. T. Zhuang, "Optimization of Grasping Efficiency of a Robot Used for Sorting Construction and Demolition Waste," Int. J. Autom. Comput., vol. 17, pp. 691–700, Oct. 2020, doi: 10.1007/s11633-020-1237-0.

[46] M. Carlsson, "Automatic Robotic Gripping Claw," B.S. thesis, Halmstad University, 2015.

[47] S. G. Akrawi, "Sensing and Real-Time Expert System for a Masonry Building Robot," Ph.D. dissertation, City, University of London, 1998.

[48] H. Deng, Z. Xia, S. Weng, Y. Gan, P. Fang, and J. Xiong, "A Motion Sensing-Based Framework for Robotic Manipulation," Robot. Biomim., vol. 3, no. 1, p. 13, Dec. 2016, doi: 10.1109/RCAR.2016.7784082.

[49] M. R. Alam et al., "A Survey on IoT Driven Smart Parking Management System: Approaches, Limitations and Future Research Agenda," IEEE Access, vol. 11, pp. 119523–119543, 2023, doi: 10.1109/ACCESS.2023.3327306.

[50] R. L. Dos Santos et al., "A Low-Cost Bidirectional People Counter Device for Assisting Social Distancing Monitoring for COVID-19," J. Control Autom. Electr. Syst., vol. 33, no. 4, pp. 1148–1160, Aug. 2022, doi: 10.1007/s40313-022-00916-z.

[51] S. Komarizadehasl, B. Mobaraki, H. Ma, J. A. Lozano-Galant, and J. Turmo, "Low-Cost Sensors Accuracy Study and Enhancement Strategy," Appl. Sci., vol. 12, no. 6, p. 3186, Mar. 2022, doi: 10.3390/app12063186.

[52] T. Tuncer and O. Yar, "Fuzzy Logic-Based Smart Parking System," Ingénierie des Systèmes d'Inf., vol. 24, no. 5, pp. 455–461, Oct. 2019, doi: 10.61448/jerisd12236.

[53] J. Yang, B. Zhao, and B. Liu, "Distance and Velocity Measurement of Coherent Lidar Based on Chirp Pulse Compression," Sensors, vol. 19, no. 10, p. 2313, May 2019, doi: 10.3390/s19102313.

[54] S. Royo and M. Ballesta-Garcia, "An Overview of Lidar Imaging Systems for Autonomous Vehicles," Appl. Sci., vol. 9, no. 19, p. 4093, Sep. 2019, doi: 10.3390/app9194093.

[55] J. Gonçalves, J. P. Coelho, M. Braz-César, and P. Costa, "Performance Enhancement of a Neato XV-11 Laser Scanner Applied to Mobile Robot Localization: A Stochastic Modeling Approach," in CONTROLO 2020, vol. 722, LNEE, Springer, 2021, pp. 49–62, doi: 10.1007/978-3-030-58653-9_5.

[56] W. T. Abbood, O. I. Abdullah, and E. A. Khalid, "A Real-Time Automated Sorting of Robotic Vision System Based on the Interactive Design Approach," Int. J. Interact. Des. Manuf., vol. 14, no. 1, pp. 201–209, Mar. 2020, doi: 10.1007/s12008-019-00628-w.

[57] R. Song, F. Li, T. Fu, and J. Zhao, "A Robotic Automatic Assembly System Based on Vision," Appl. Sci., vol. 10, no. 3, p. 1157, Feb. 2020, doi: 10.3390/app10031157.

[58] V. D. Cong and D. A. Duy, "Design and Development of Robot Arm System for Classification and Sorting Using Machine Vision," FME Trans., vol. 50, no. 1, pp. 217–224, 2022, doi: 10.5937/fme2201181C.

[59] P. Dolezel, D. Stursa, D. Kopecky, and J. Jecha, "Memory Efficient Grasping Point Detection of Nontrivial Objects," IEEE Access, vol. 9, pp. 82130–82145, 2021, doi: 10.1109/ACCESS.2021.3086417.

[60] D. Stogl, D. Zumkeller, S. E. Navarro, A. Heilig, and B. Hein, "Tracking, Reconstruction and Grasping of Unknown Rotationally Symmetrical Objects from a Conveyor Belt," in Proc. 22nd IEEE Int. Conf. Emerg. Technol. Fact. Autom. (ETFA), Limassol, Cyprus, Sep. 2017, pp. 1–8, doi: 10.1109/ETFA.2017.8247651.

[61] N. K. Al-Karkhi, W. T. Abbood, E. A. Khalid, A. N. Jameel Al-Tamimi, A. A. Kudhair, and O. I. Abdullah, "Intelligent Robotic Welding Based on a Computer Vision Technology Approach," Computers, vol. 11, no. 11, p. 155, Nov. 2022, doi: 10.3390/computers11110155.

[62] J. Cho, S. Kang, and K. Kim, "Real-Time Precise Object Segmentation Using a Pixel-Wise Coarse-Fine Method with Deep Learning for Automated Manufacturing," J. Manuf. Syst., vol. 62, pp. 114–123, Jan. 2022, doi: 10.1016/j.jmsy.2021.11.004.

[63] J. Park, D. Kim, S. Mun, K. Kwon, J. Lee, and K. H. Ko, "Automated Thermal Forming of Curved Plates in Shipbuilding: System Development and Validation," Int. J. Comput. Integr. Manuf., vol. 29, no. 10, pp. 1128–1145, Oct. 2016, doi: 10.1080/0951192X.2016.1145800.

[64] K. A. Tychola, I. Tsimperidis, and G. A. Papakostas, "On 3D Reconstruction Using RGB-D Cameras," Digital, vol. 2, no. 3, pp. 401–421, Sep. 2022, doi: 10.3390/digital2030022.

[65] H. N. Tran, "Study on Image Processing Method to Classify Objects on Dynamic Conveyor," VNUHCM J. Eng. Technol., vol. 2, no. SI2, pp. SI127–SI136, Dec. 2019, doi: 10.32508/stdjet.v2iSI2.489.

[66] J. Hu et al., "CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-Aware 3D Gaussian Field," in Proc. Eur. Conf. Comput. Vis., Milan, Italy, 2024, vol. 14902, pp. 93–112, doi: 10.1007/978-3-031-72698-9_6.

[67] W. Abbeloos and T. Goedemé, "Exploring the Potential of Combining Time of Flight and Thermal Infrared Cameras for Person Detection," 2016, boi: 10.5220/0004595704640470.

[68] I. Tyapin and G. Hovland, "The Gantry-Tau Parallel Kinematic Machine—Kinematic and Elastodynamic Design Optimisation," Meccanica, vol. 46, pp. 113–129, Jan. 2011, doi: 10.1007/s11012-010-9394-9.

التنزيلات

منشور

12/01/2025

كيفية الاقتباس

ايجاد بعد وموقع الجسم في نظام روبوت القنطرة والناقل: مراجعة. (2025). مجلة الخوارزمي الهندسية, 21(4), 106-124. https://doi.org/10.22153/kej.2025.04.012

المؤلفات المشابهة

1-10 من 266

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.