Experimental Study of Forced- Convection from Horizontal Rectangular Fins Array into Air Duct
pdf

Keywords

Fins array, circular-perforations, rectangular-notches, forced-convection, experimental study.

How to Cite

Experimental Study of Forced- Convection from Horizontal Rectangular Fins Array into Air Duct. (2019). Al-Khwarizmi Engineering Journal, 15(1), 35-45. https://doi.org/10.22153/kej.2019.07.001

Publication Dates

Abstract

    In this work, an experimental study has been done to expect the heat characteristics and performance of the forced-convection from a heated horizontal rectangular fins array to air inside a rectangular cross-section duct. Three several configurations of rectangular fins array have been employed. One configuration without notches and perforations (solid) and two configurations with combination of rectangular-notches and circular-perforations for two various area removal percentages from fins namely 18% notches-9% perforations and 9% notches-18% perforations are utilized.  The rectangular fins dimensions and fins number are kept constant. The fins array is heated electrically from the base plate with five different magnitudes of power-inputs. Five several air flow velocity into a duct are utilized. The influence of fin geometry, air flow velocity, Reynolds number and the surface heat flux on the heat-performance of forced heat convection have been simulated and studied experimentally. The experimental data indicates that the combination of 18% rectangular-notched and 9% circular-perforated rectangular fins array gave best forced heat performance in terms of average heat transfer coefficient about (25% - 45%) and (7% - 20%) compared than solid and 9% notches with18% perforations fins array respectively. Five empirical correlations to predict the average Nusselt number for the 18% notches with 9% perforations rectangular fins array at wide range of surface heat flux are deduced. The present data are compared with previous works and a good closeness in behavior is noticed.

pdf

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.