Natural Convection Heat Transfer in an Inclined Open-Ended Square Cavity with Partially Active Side Wall

  • Jasim M. Mahdi Department of Energy Engineering/ College of Engineering/ University of Baghdad
Keywords: Natural convection, square cavity, partially active side wall

Abstract

This paper reports a numerical study of flow behaviors and natural convection heat transfer characteristics in an inclined open-ended square cavity filled with air. The cavity is formed by adiabatic top and bottom walls and partially heated vertical wall facing the opening. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. A computer program to solve mathematical model has been developed and written as a code for MATLAB software. Results in the form of streamlines, isotherms, and average Nusselt number, are obtained for a wide range of Rayleigh numbers 103-106 with Prandtl number 0.71 (air) , inclination angles measured from the horizontal direction 0º-60º , dimensionless lengths of the active part 0.4-1 ,and different locations of the thermally active part at the vertical wall. The Results show that heat transfer rate is high when the length of the active part is increased or the active part is located at middle of vertical wall. Further, the heat transfer rate is poor as inclination angle is increased.

Downloads

Download data is not yet available.
Published
2012-08-31
How to Cite
Mahdi, J. (2012). Natural Convection Heat Transfer in an Inclined Open-Ended Square Cavity with Partially Active Side Wall. Al-Khwarizmi Engineering Journal, 8(3), 81 - 94. Retrieved from https://alkej.uobaghdad.edu.iq/index.php/alkej/article/view/141
Section
Articles