An Autocorrelative Approach for EMG Time-Frequency Analysis
PDF

Keywords

Digital Signal processing
Nonstationary Processing of Biomedical Signals
Time-Frequency Analysis of Biosignals

How to Cite

An Autocorrelative Approach for EMG Time-Frequency Analysis. (2017). Al-Khwarizmi Engineering Journal, 9(1), 39-46. https://alkej.uobaghdad.edu.iq/index.php/alkej/article/view/157

Publication Dates

Abstract

As they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detected signals with various degrees of automation. This paper investigates the application of autocorrelation function (ACF) method to decompose EMG signals to their frequency components. It was found that using the proposed method gives a quite good frequency resolution as compared to that resulting from using short time fast Fourier transform (STFFT); thus more MU’s can be distinguished.

PDF

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.