Abstract
Abstract
One of the most suitable materials to be used in latent heat thermal energy storage system (LHTES) are Phase change materials, but a problem of slow melting and solidification processes made many researchers focusing on how to improve their thermal properties. This experimental work concerned with the enhancing of thermal conductivity of phase change material. The enhancing method was by the addition of copper Lessing rings in phase change material (paraffin wax). The effect of diameter for the used rings was studied by using two different diameters (0.5 cm and 1cm). Also, three volumetric percentages of rings addition (3%, 6% and 10%) were tested for each diameter. The discharging process was done with four velocities for each case. The obtained results indicated that the maximum volumetric percentage gave a diminished time for melting and maximized the heat transfer in both PCM and air sides as compare with the case of no rings, but the effect of these rings had lower effect on the solidification time. In case of 1 cm rings diameter minimum time for melting was obtained for both 3% and 6% volumetric percentages as compared with the same percentages in case of 0.5 cm diameter rings, while the latter with 10% volumetric percentage overcomes the 1 cm diameter rings for the same previous percentage. Also it can be seen that the minimum velocity (v=1m/s) gave the utmost outlet temperature and with the maximum one (v=3m/s), the minimum solidification time achieved.
Keyword: Thermal energy storage systems, Latent heat storage, Phase change materials, Heat transfer enhancement.
Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.