A Review on Tool Pin Geometry of Friction Stir Welding
pdf

How to Cite

A Review on Tool Pin Geometry of Friction Stir Welding. (2024). Al-Khwarizmi Engineering Journal, 20(2), 39-55. https://doi.org/10.22153/kej.2024.02.001

Publication Dates

Abstract

Friction stir welding (FSW) is an innovative solid joining operation that has recently been intensively adopted in welding various similar and dissimilar metallic materials, including aluminum, steel, titanium alloys, and others. The success of FSW relies on a set of parameters like rotational speed, travel speed, axial force, tool geometry, etc. The role of tool geometry (involving both pin and shoulder design) is highly important in producing sound and high-strength weld joints. Therefore, this research aims to review the latest published works regarding the performance of different tool geometries. The discussion of the findings of the cited works revealed that each tool pin design has shown different behavior due to the various stirring efficiencies of the materials being welded. All in all, the square threaded pin had the best geometry in terms of its mechanical properties compared to other pin designs. The threaded cylinders and threaded taper are most commonly utilized and offer good joints, while the maximum joint efficiency was achieved by the square pin profile and it reached 94% in some investigations.

pdf

References

M. Ozesmi, T. E. Patiroglu, G. Hillerdal, and C. Ozesmi, “Peritoneal mesothelioma and malignant lymphoma in mice caused by fibrous zeolite.,” Br. J. Ind. Med., vol. 42, no. 11, p. 746, 1985.

T.-O. Adebola, “Co2 Corrosion of the Welded Joint of an X65 Steel: Analysis of Surface Film Formed.” 2014.

W. M. Thomas, “Friction Stir Butt Welding, International Patent Application No. PCT/GB92,” GB Pat. Appl. No. 9125978.8, 1991.

W. T. Evans, The Application of Friction Stir Welding Processes to New Materials and New Material Combinations. Vanderbilt University, 2018.

S. Shah and S. Tosunoglu, “Friction stir welding: current state of the art and future prospects,” in 16th World multi-conference on systemics, cybernetics and informatics, Orlando, Florida, 2012, pp. 17–20.

A. K. Choudhary and R. Jain, “Fundamentals of friction stir welding, its application, and advancements,” in Welding Technology, Springer, 2021, pp. 41–90.

S. Sulaiman, S. Emamian, M. N. Sheikholeslam, and M. Mehrpouya, “Review of the effects of friction stir welding speed on stainless steel type 304L,” Int. J. Mater. Mech. Manuf., vol. 1, no. 1, pp. 85–87, 2013.

S. Emamian et al., “A review of friction stir welding pin profile,” Lect. Notes Mech. Eng., no. April, pp. 1–18, 2017, doi: 10.1007/978-981-10-4232-4_1.

M. B. Uday, M. N. Ahmad Fauzi, H. Zuhailawati, and A. B. Ismail, “Advances in friction welding process: a review,” Sci. Technol. Weld. Join., vol. 15, no. 7, pp. 534–558, 2010.

M. M. El-Sayed, A. Y. Shash, M. Abd-Rabou, and M. G. ElSherbiny, “Journal of Advanced Joining Processes”.

S. M. Senthil, M. Bhuvanesh Kumar, and M. S. Dennison, “A Contemporary Review on Friction Stir Welding of Circular Pipe Joints and the Influence of Fixtures on This Process,” Adv. Mater. Sci. Eng., vol. 2022, p. 1311292, 2022, doi: 10.1155/2022/1311292.

M. Bevilacqua, F. E. Ciarapica, A. Forcellese, and M. Simoncini, “Comparison among the environmental impact of solid state and fusion welding processes in joining an aluminium alloy,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 234, no. 1–2, pp. 140–156, 2020.

N. Bhardwaj, R. G. Narayanan, U. S. Dixit, and M. S. J. Hashmi, “Recent developments in friction stir welding and resulting industrial practices,” Adv. Mater. Process. Technol., vol. 5, no. 3, pp. 461–496, 2019.

A. Arif, S. K. Gupta, and K. N. Pandey, “3 rd International Conference on Production and Industrial Engineering Finite Element Modeling for Validation of Maximum Temperature in Friction Stir Welding of Aluminum Alloy,” no. March 2013, 2013.

P. L. Threadgill, A. J. Leonard, H. R. Shercliff, and P. J. Withers, “Friction stir welding of aluminium alloys,” Int. Mater. Rev., vol. 54, no. 2, pp. 49–93, 2009.

S. Emamian, M. Awang, P. Hussai, B. Meyghani, and A. Zafar, “Influences of tool pin profile on the friction stir welding of AA6061,” ARPN J. Eng. Appl. Sci., vol. 11, no. 20, pp. 12258–12261, 2016.

G. K. Padhy, C. S. Wu, and S. Gao, “Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review,” J. Mater. Sci. Technol., vol. 34, no. 1, pp. 1–38, 2018.

P. Tasić, I. Hajro, D. Hodžić, and D. Dobraš, “Energy efficient welding technology: Fsw,” in Proceedings of the 11th International Conference on Accomplishments in Electrical and Mechanical Engineering and Information Technology, 2013.

M. Karthikeyan and S. A., “Influence of tool design in the mechanical properties and microestructure in friction stir welding of AA6351 aluminum alloy,” Eng. Sci. Technol. an Int. J., vol. 2, no. 2, p. 5, 2012.

“Schematic-illustration-of-the-FSW-process-4.”

C. Blignault, “Design , Development and Analysis of the Friction Stir Welding Process,” Thesis, PORT Elizab. Tech. Magister Technol. Mech. Eng., p. 247, 2002.

A. V. V. and R. S. T. Pavan KumarȦ, “Influence of Tool Geometry in Friction Stir Welding on Material Flow Pattern,” Int. J. Curr. Eng. Technol., pp. 230–235, 2014.

S. W. Kallee, W. M. Thomas, and E. Dave Nicholas, “Friction stir welding of lightweight materials,” Magnes. Alloy. their Appl., pp. 173–190, 2000.

J. P. Davim, V. P. Astakhov, and J. P. Davim, “Tools (geometry and material) and tool wear,” Mach. Fundam. Recent Adv., pp. 29–57, 2008.

C. Munro and D. Walczyk, “Reconfigurable pin-type tooling: A survey of prior art and reduction to practice,” 2007.

I. Galvão, R. M. Leal, D. M. Rodrigues, and A. Loureiro, “Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets,” J. Mater. Process. Technol., vol. 213, no. 2, pp. 129–135, Feb. 2013, doi: 10.1016/j.jmatprotec.2012.09.016.

J. Marzbanrad, M. Akbari, P. Asadi, and S. Safaee, “Characterization of the Influence of Tool Pin Profile on Microstructural and Mechanical Properties of Friction Stir Welding,” Metall. Mater. Trans. B, vol. 45, no. 5, pp. 1887–1894, Oct. 2014, doi: 10.1007/s11663-014-0089-9.

Doos, Qasim M. and K. S. Makki, “Defects Analysis of Tee-Section Welding Using Friction Stir Welding Process of Aluminum,” J. Eng., vol. 20, no. 10, p. 10, 2014.

F. F. Mustafa, A. H. Kadhym, and H. H. Yahya, “Tool geometries optimization for friction stir welding of AA6061-T6 aluminum alloy T-joint using taguchi method to improve the mechanical behavior,” J. Manuf. Sci. Eng. Trans. ASME, vol. 137, no. 3, pp. 1–8, 2015, doi: 10.1115/1.4029921.

H. I. Dawood, K. S. Mohammed, A. Rahmat, and M. B. Uday, “Effect of small tool pin profiles on microstructures and mechanical properties of 6061 aluminum alloy by friction stir welding,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 25, no. 9, pp. 2856–2865, 2015, doi: 10.1016/S1003-6326(15)63911-5.

M. Ilangovan, S. Rajendra Boopathy, and V. Balasubramanian, “Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061–AA 5086 aluminium alloy joints,” Def. Technol., vol. 11, no. 2, pp. 174–184, 2015, doi: 10.1016/j.dt.2015.01.004.

M. M. Al-kubaisy, “Optimization of Friction Stir Welding Process Parameters of Dissimilar AA2024-T3 T3 and AA7075-T73 Aluminum Alloys Alloy by Using Taguchi Method,” Al-Khwarizmi Eng. J., vol. 12, no. 1, pp. 100–109, 2016.

S. S. Sabari, S. Malarvizhi, and V. Balasubramanian, “The effect of pin profiles on the microstructure and mechanical properties of underwater friction stir welded AA2519-T87 aluminium alloy,” Int. J. Mech. Mater. Eng., vol. 11, no. 1, pp. 1–14, 2016.

H. M. A. Kumar, “Effect of tool pin profile on dissimilar friction stir welding of aluminum alloy aa 7075 t651 and aa 6061 t6,” Int. J. Latest Trends Eng. Technol., vol. 8, no. 3, 2017, doi: 10.21172/1.83.015.

N. Sharma, A. N. Siddiquee, Z. A. Khan, and M. T. Mohammed, “Material stirring during FSW of Al–Cu: Effect of pin profile,” Mater. Manuf. Process., vol. 33, no. 7, pp. 786–794, 2018, doi: 10.1080/10426914.2017.1388526.

D. K. C. Udaiyakumar, M. Krishna, K. C. Udaiyakumar, D. K. Mohan Kumar, and H. Mohammed Ali, “Analysis on effect of using different tool pin profile and mechanical properties by friction stir welding on dissimilar aluminium alloys Al6061 and Al7075,” IOP Conf. Ser. Mater. Sci. Eng., vol. 402, no. 1, 2018, doi: 10.1088/1757-899X/402/1/012099.

P. Goel et al., “Investigation on the effect of tool pin profiles on mechanical and microstructural properties of friction stir butt and scarf welded aluminium alloy 6063,” Metals (Basel)., vol. 8, no. 1, p. 74, 2018.

S. A. Amin, M. Y. Hanna, and A. F. Mohamed, “Experimental Study the Effect of Tool Design on the Mechanical Properties of Bobbin Friction Stir Welded 6061-T6 Aluminum Alloy,” Al-Khwarizmi Eng. J., vol. 14, no. 3, pp. 1–11, 2018, doi: 10.22153/kej.2018.01.003.

A. A. G. A. Maboud, N. A. El-Mahallawy, and S. H. Zoalfakar, “Process parameters optimization of friction stir processed Al 1050 aluminum alloy by response surface methodology (RSM),” Mater. Res. Express, vol. 6, no. 2, p. 26527, 2018.

A. R. Martin, C. P. Moore, W. H. Finlay, A. R. Martin, C. P. Moore, and W. H. F. Models, “Ac ce us,” Expert Opin. Drug Deliv., p. 1, 2018, [Online]. Available: https://doi.org/10.1080/17425247.2018.1544616

A. Shammari, “Evaluation of FSW Process Parameters of Dissimilar Aluminium Alloys Evaluation of FSW Process Parameters of Dissimilar Aluminium Alloys,” vol. 7, no. December, pp. 55–69, 2019.

H. Su, L. Xue, and C. Wu, “Optimizing the tool pin with three flats in friction stir welding of aluminum alloy,” Int. J. Adv. Manuf. Technol., vol. 108, no. 3, pp. 721–733, 2020, doi: 10.1007/s00170-020-05479-4.

M. Shiva Chander, M. Ramakrishna, B. Durga Prasad, and A. Rajesh, “A Review on Impact of Tool pin Geometry on Friction Stir Welding of Aluminum alloys,” IOP Conf. Ser. Mater. Sci. Eng., vol. 981, no. 4, 2020, doi: 10.1088/1757-899X/981/4/042018.

F. F. Mustafa and S. R. Daham, “Investigation of process parameters for T-joint aluminum alloy 6061-T6 with nanocomposites material friction stir welding based on the Taguchi method,” J. Comput. Appl. Res. Mech. Eng., vol. 11, no. 1, pp. 101–111, 2021, doi: 10.22061/JCARME.2020.4314.1522.

S. Jayaprakash et al., “Effect of Tool Profile Influence in Dissimilar Friction Stir Welding of Aluminium Alloys (AA5083 and AA7068),” Adv. Mater. Sci. Eng., vol. 2021, 2021, doi: 10.1155/2021/7387296.

N. M. Battina, V. Siva, P. Vanthala, and H. K. Chirala, “Influence of tool pin profile on mechanical and metallurgical behavior of friction stir welded AA6061-T6 and AA2017-T6 tailored blanks In fl uence of tool pin pro fi le on mechanical and metallurgical behavior of friction stir welded AA6061-T6 and AA2017-”.

S. Gopi and D. G. Mohan, “Evaluating the Welding Pulses of Various Tool Profiles in Single-Pass Friction Stir Welding of 6082-T6 Aluminium Alloy,” J Weld Join, vol. 39, no. 3, pp. 284–294, Jun. 2021, doi: 10.5781/JWJ.2021.39.3.7.

M. M. Z. Ahmed et al., “Bobbin tool friction stir welding of aluminum thick lap joints: Effect of process parameters on temperature distribution and joints’ properties,” Materials (Basel)., vol. 14, no. 16, 2021, doi: 10.3390/ma14164585.

A. Raj, J. Pratap Kumar, A. Melwin Rego, and I. Sunit Rout, “Optimization of friction stir welding parameters during joining of AA3103 and AA7075 aluminium alloys using Taguchi method,” Mater. Today Proc., vol. 46, no. xxxx, pp. 7733–7739, 2021, doi: 10.1016/j.matpr.2021.02.246.

S. Ahmed et al., “Optimization of Process Parameters in Friction Stir Welding of Aluminum 5451 in Marine Applications,” J. Mar. Sci. Eng., vol. 10, no. 10, 2022, doi: 10.3390/jmse10101539.

G. Wang, Y. Zhao, and Y. Hao, “Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing,” J. Mater. Sci. Technol., vol. 34, no. 1, pp. 73–91, 2018.

K. P. Mehta, R. Patel, H. Vyas, S. Memon, and P. Vilaça, “Repairing of exit-hole in dissimilar Al-Mg friction stir welding: Process and microstructural pattern,” Manuf. Lett., vol. 23, pp. 67–70, 2020.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Al-Khwarizmi Engineering Journal