Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials
pdf

Keywords

Compression Test, Lignin, Nano-ZrO2, Hardness Test, Impact Test, Particles, PMMA, Tensile Test.

How to Cite

Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials. (2018). Al-Khwarizmi Engineering Journal, 14(3), 100-111. https://doi.org/10.22153/kej.2018.01.006

Publication Dates

Abstract

In this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer composite materials. They were prepared in this research, as a complete prosthesis and partial denture base materials was prepared, by using cold cure poly methyl methacrylate (PMMA) resin matrix. The composite specimens in this research consist of two groups according to the types of reinforced particles, were prepared by using casting methods, type (Hand Lay-Up) method. The first group consists of PMMA resin reinforced by (nano-ZrO2) particles, while the second group consists of PMMA resin reinforced by (micro-lignin) particles.

The mechanical tests performed in this research includedtensile test, compression test, impact test and hardness test. The results of this study showed that the values of tensile modulus of elasticity, compressive strength and hardness properties increased with increasing the volume fraction of these particles in PMMA composite materials. While, the values of tensile strength, elongation and impact strength properties decreased. Also, the addition of (nano-ZrO2) particles showed greater effect than that of (micro-lignin) particles in some properties of PMMA composite materials for prosthesis denture base materials specimens, while they have lower effect for the other properties.

pdf

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.