Abstract
The integration of the Internet of Things (IoT) in healthcare has transformed the monitoring of physiological parameters, significantly enhancing the capabilities of medical diagnostics and patient care. This study explores the use of advanced cryptographic techniques to secure IoT healthcare systems, particularly through block chain (BC) technology. Moreover, this study evaluates the effectiveness of two cryptographic key generators—bee swarm key generator and snake key generator—in enhancing data security within a BC-based framework for remote patient monitoring. Our study conducts a series of NIST randomness tests to compare the performance of these key generators in terms of randomness, resilience to cryptographic attacks and computational efficiency. Results show that the snake key generator outperforms the bee swarm key generator, demonstrating higher randomness in key generation and better secure coverage of the orientation space. This finding is crucial for securing important healthcare data, especially given the complexity of IoT devices, which transmit vital patient health information. Furthermore, this study examines the double-layer encryption architecture used to secure data in at rest and during transmission from a sensor’s gathering location to long-term storage. This approach is essential to preserve the privacy and integrity of patient data, which is critical for maintaining trust in IoT healthcare systems. This study aims to provide a comprehensive and comparative analysis to support the continued evolution of secure, efficient and scalable cryptographic solutions within IoT healthcare, demonstrating the importance of selecting the most effective key generation technique to address the unique security challenges of this new field.
References
[1] S. A. Butt, J. L. Diaz-Martinez, T. Jamal, A. Ali, E. De-La-Hoz-Franco, and M. Shoaib, “IoT Smart Health Security Threats,” in 2019 19th International Conference on Computational Science and Its Applications (ICCSA) (IEEE, Saint Petersburg, Russia, 2019) pp. 26–31, doi: 10.1109/ICCSA.2019.000-8 .
[2] A. Frimpong, C. Barbosa, and R. A. Abd-Alhameed, “The impact of the internet of things (iot) on healthcare delivery: A systematic literature review.” Journal of Techniques 5 (2023),
doi: https://doi.org/10.51173/jt.v5i3.1433.
[3] H. F. Jawad, A. Al-Askery, and A. H. Ali, “Design and implementation of a healthcare monitoring system based on lora.” Journal of Techniques 4 (2022), doi: https://doi.org/10.51173/jt.v4i4.792.
[4] S. Mohapatra, A. Sahoo, S. Mohanty, and D. Singh, “IoT Enabled Ubiquitous Healthcare System using Predictive Analytics,” Procedia Computer Science 218, 1581–1590 (2023), doi: 10.1016/j.procs.2023.01.136.
[5] Awotunde, J. B., Jimoh, R. G., Folorunso, S. O., Adeniyi, E. A., Abiodun, K. M., & Banjo, O. O. (2021). Privacy and security concerns in IoT-based healthcare systems. In The fusion of internet of things, artificial intelligence, and cloud computing in health care (pp. 105-134). Cham: Springer International Publishing doi: 10.1007/978-3-030-75220-0_6.
[6] Raparthi, M. (2021). Privacy-Preserving IoT Data Management with BC and AI-A Scholarly Examination of Decentralised Data Ownership and Access Control Mechanisms. Internet of Things and Edge Computing Journal, 1(2), 1-10 https://thesciencebrigade.com/iotecj/article/view/131/132.
[7] Abbas, K., Tawalbeh, L. A. A., Rafiq, A., Muthanna, A., Elgendy, I. A., & Abd El-Latif, A. A. (2021). Convergence of blockchain and IoT for secure transportation systems in smart cities. Security and Communication Networks, 2021, 1-13 doi:10.1155/2021/5597679.
[8] Rangappa, J. D., Manu, A. P., Kariyappa, S., Chinnababu, S. K., Lokesh, G. H., & Flammini, F. (2023). A Lightweight Blockchain to Secure Data Communication in IoT Network on Healthcare System. International Journal of Safety & Security Engineering, 13(6) DOI: https://doi.org/10.18280/ijsse.130604.
[9] Perwej, Y., Akhtar, N., Kulshrestha, N., & Mishra, P. (2022). A methodical analysis of medical internet of things (MIoT) security and privacy in current and future trends. Journal of Emerging Technologies and Innovative Research, 9(1), d346-d371 DOI: 10.6084/m9.figshare.JETIR2201346
[10] Popoola, O., Rodrigues, M., Marchang, J., Shenfield, A., Ikpehia, A., & Popoola, J. (2023). A critical literature review of security and privacy in smart home healthcare schemes adopting IoT & blockchain: problems, challenges and solutions. Blockchain: Research and Applications, 100178 doi: https://doi.org/10.1016/j.bcra.2023.100178.
[11] G. N. Nguyen, N. H. Le Viet, M. Elhoseny, K. Shankar, B. B. Gupta et al., “Secure blockchain enabled Cyber-physical systems in healthcare using deep belief network with ResNet model,” Journal of Parallel and Distributed Computing, vol. 153, no. 9, pp. 150–160, 2021 doi: https://doi.org/10.1016/j.jpdc.2021.03.011.
[12] G. Kalyani and S. Chaudhari, “An efficient approach for enhancing security in internet of things using the optimum authentication key,” International Journal of Computers and Applications, vol. 42, no. 3, pp. 306–314, 2020 doi: https://doi.org/10.1080/1206212X.2019.1619277.
[13] P. Pandey and R. Litoriya, “Securing and authenticating healthcare records through blockchain technology,” Cryptology, vol. 44, no. 4, pp. 341–356, 2020 doi: https://doi.org/10.1080/01611194.2019.1706060.
[14] T. Veeramakali, R. Siva, B. Sivakumar, P. S. Mahesh, and N. Krishnaraj, “An intelligent internet of things-based secure healthcare framework using blockchain technology with an optimal deep learning model,” The Journal of Supercomputing, vol. 4, no. 9, pp. 1–21, 2021 doi: https://doi.org/10.1007/s11227-021-03637-3
[15] A. A. Abd El-Latif, B. Abd-El-Atty, I. Mehmood, K. Muhammad, V. Andraca et al., “Quantum-inspired blockchain-based cybersecurity: Securing smart edge utilities in IoT-based smart cities,” Information doi: https://doi.org/10.1016/j.ipm.2021.102549
[16] W. Serrano, “The blockchain random neural network for cybersecure IoT and 5G infrastructure in smart cities,” Journal of Network and Computer Applications, vol. 175, no. 3, pp. 102909, 2021 doi: https://doi.org/10.1016/j.jnca.2020.102909.
[17] B. Cao, X. Wang, W. Zhang, H. Song, and Z. Lv, “A many-objective optimization model of industrial internet of things basedon private blockchain,” IEEE Network, vol. 34, no. 5, pp. 78–83, 2020 DOI: 10.1109/MNET.011.1900536.
[18] K. Shankar, M. Elhoseny, E. Perumal, M. Ilayaraja, and K. S. Kumar, “An efficient image encryption scheme based on signcryption technique with adaptive elephant herding optimization,” Cybersecurity and Secure Information Systems, vol. 12, no. 4, pp. 31–42, 2019 doi: 10.1007/978-3-030-16837-7_3.
[19] R. S. Mathews, A. N. Maadhuree, R. R. Justus, K. Vishnu, and C. R. Robin, “Fulcrum: Cognitive therapy system for stress relief by emotional perception using DNN,” in Int. Conf. on Em doi: https://doi.org/10.1007/978-3-030-32150-5_120.
[20] L. Abualigah, R. A. Zitar, K. H. Almotairi, A. M. Hussein, M. Abd Elaziz, M. R. Nikoo, and A. H. Gandomi, "Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: a survey of advanced machine learning and deep learning techniques," Energies, vol. 15, no. 2, pp. 578, 2022 doi: https://doi.org/10.3390/en15020578.
[21] H. Ahmadi, G. Arji, L. Shahmoradi, R. Safdari, M. Nilashi, and M. Alizadeh, "The application of internet of things in healthcare: a systematic literature review and classification," Univ Access Inf Soc, vol. 18, no. 4, pp. 837–869, 2019 doi: https://doi.org/10.1007/s10209-018-0618-4.
[22] S. Mukherjee and G. P. Biswas, "Networking for IoT and applications using existing communication technology," Egypt Inform J, vol. 19, no. 2, pp. 107–127, 2018 doi: https://doi.org/10.1016/j.eij.2017.11.002.
[23] P. Chanak and I. Banerjee, "Internet-of-things-enabled smartvillages: an overview," IEEE Consum Electron Mag, vol. 10, no. 3, pp. 12–18, 2020 DOI: 10.1109/MCE.2020.3013244.
[24] L. Catarinucci, D. De Donno, L. Mainetti, L. Palano, L. Patrono, M. L. Stefanizzi, and L. Tarricone, "An IoT-aware architecture for smart healthcare systems," IEEE Internet Things J, vol. 2, no. 6, pp. 515–526, 2015 DOI: 10.1109/JIOT.2015.2417684.
[25] T. M. Ghazal, M. K. Hasan, M. T. Alshurideh, H. M. Alzoubi, M. Ahmad, and S. S. Akbar, "IoT for smart cities: machine learning approaches in smart healthcare—a review," Future Internet, vol. 13, no. 8, pp. 218, 2021 doi: https://doi.org/10.3390/fi13080218.
[26] S. Dash, S. K.Shakyawar, M. Sharma, and S. Kaushik, "Big data in healthcare: management, analysis and future prospects," J Big Data, vol. 6, no. 1, pp. 54, 2019 doi: https://doi.org/10.1186/s40537-019-0217-0.
[27] S. Zeadally, F. Siddiqui, Z. Baig, and A. Ibrahim, "Smart healthcare: challenges and potential solutions using internet of things (IoT) and big data analytics," PSU Res Rev, pp. 1–17, 2019 DOI 10.1108/PRR-08-2019-0027.
[28] S. K. Abujayyab, K. H. Almotairi, M. Alswaitti, S. S. A. Amr, A. F. Alkarkhi, E. Taşoğlu, and A. M. Hussein, "Effects of meteorological parameters on surface water loss in Burdur Lake, Turkey over 34 years Landsat Google earth engine time-series," Land, vol. 10, no. 12, pp. 1301, 2021 doi: https://doi.org/10.3390/land10121301.
[29] M. Otair, A. Alhmoud, H. Jia, M. Altalhi, A. M. Hussein, and L. Abualigah, "Optimized task scheduling in cloud computing using improved multi-verse optimizer," Clust Comput, 2022 doi: https://doi.org/10.1007/s10586-022-03650-y.
[30] M. M. Dhanvijay and S. C. Patil, "Internet of things: a survey of enabling technologies in healthcare and its applications," Comput Netw, vol. 153, pp. 113–131, 2019 doi: https://doi.org/10.1016/j.comnet.2019.03.006.
[31] J. T. Kelly, K. L. Campbell, E. Gong, and P. Scuffham, "The Internet of Things: Impact and implications for health care delivery," J Med Internet Res, vol. 22, no. 11, pp. e20135, 2020 doi: 10.2196/20135.
[32] A. Thamara, M. Elsersy, A. Sherif, H. Hassan, O. Abdelsalam, and K. H. Almotairi, "A novel classification of machine learning applications in healthcare," in 2021 3rd IEEE Middle East and North Africa COMMunications conference (MENACOMM), IEEE, pp. 80–85, 2021 DOI: 10.1109/MENACOMM50742.2021.9678232.
[33] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," Decentralized Bus. Rev., vol. 5, p. 21260, Oct. 2008 https://www.researchgate.net/publication/228640975_Bitcoin_A_Peer-to-Peer_Electronic_Cash_System.
[34] Y. Wang, Z. Su, J. Ni, N. Zhang, and X. Shen, "Blockchain-empowered space-air-ground integrated networks: Opportunities, challenges, and solutions," IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 160–209, 1st Quart., 2022 DOI: 10.1109/COMST.2021.3131711.
[35] J. Xie, H. Tang, T. Huang, F. R. Yu, R. Xie, J. Liu, and A. Liu, "A survey of blockchain technology applied to smart cities: Research issues and challenges," IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2794–2830, 3rd Quart., 2019 DOI: 10.1109/COMST.2019.2899617.
[36] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, "A survey on blockchain interoperability: Past, present, and future trends," ACM Comput. Surv., vol. 54, no. 8, pp. 1–41, Nov. 2022 doi: https://doi.org/10.1145/3471140.
[37] G. Zyskind and O. Nathan, "Decentralizing privacy: Using blockchain to protect personal data," in Proceedings of the 2015 IEEE Security and Privacy Workshops, San Jose, CA, USA, 21–22 May 2015; IEEE: New York, NY, USA, 2015; pp. 180–184 doi: https://doi.org/10.1145/3471140.
[38] R. Hassan, A. Ahmed, and N. E. Osman, "Enhancing security for IPv6 neighbor discovery protocol using cryptography," Am. J. Appl. Sci., vol. 11, pp. 1472–1479, 2014 DOI: 10.3844/ajassp.2014.1472.1479.
[39] G. Aruna, M. K. Hasan, S. Islam, K. G. Mohan, P. Sharan, and R. Hassan, "Cloud to cloud data migration using self sovereign identity for 5G and beyond," Clust. Comput., vol. 25, pp. 2317–2331, 2021 doi: https://doi.org/10.1007/s10586-021-03461-7.
[40] S. Bhattacharya, A. Singh, and M. Hossain, "Strengthening public health surveillance through blockchain technology," AIMS Public Health, vol. 6, pp. 326–333, 2019 DOI:10.3934/publichealth.2019.3.326.
[41] R. MIslam, M. Rahman, M. Mahmud, M. Rahman, and M. H. S. Mohamad, "A Review on blockchain security issues and challenges," in Proceedings of the 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 7 August 2021; IEEE: New York, NY, USA, 2021; pp. 227–232 DOI:10.1109/ICSGRC53186.2021.9515276.
[42] Sullivan, "Blockchain-based identity: The advantages and disadvantages," in Blockchain and the Public Sector; Springer: Cham, Switzerland, 2021; pp. 197–218 doi: https://doi.org/10.1007/978-3-030-55746-1.
[43] Daemen, J. and Rijmen, V., 1999. AES proposal: Rijndael https://www.researchgate.net/publication/2237728_AES_proposal_rijndael.
[44] Sleem, L., & Couturier, R. (2021). Speck-R: An ultra-light-weight cryptographic scheme for Internet of Things. Multimedia Tools and Applications, 80(11), 17067-17102 doi: https://doi.org/10.1007/s11042-020-09625-8

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Al-Khwarizmi Engineering Journal