Abstract
Abstract
Magnetic abrasive finishing (MAF) process is one of non-traditional or advanced finishing methods which is suitable for different materials and produces high quality level of surface finish where it uses magnetic force as a machining pressure. A set of experimental tests was planned according to Taguchi orthogonal array (OA) L27 (36) with three levels and six input parameters. Experimental estimation and optimization of input parameters for MAF process for stainless steel type 316 plate work piece, six input parameters including amplitude of tooth pole, and number of cycle between teeth, current, cutting speed, working gap, and finishing time, were performed by design of experiment (DOE) and response surface methodology (RSM).These six input parameters in this research were optimized for all input parameters to improve the surface layer for work piece by using signal-to-noise ratio technique. The obtained results showed that all six input parameters have an influence on the change in surface roughness(∆Ra). In addition, the results showed that the surface roughness of the work piece decreased from 1.130 to 0.370µm that means high level of improvement in the change of surface roughness (0.760)µm.
Keywords: MAF process, MINITAB software, parameters, Signal-to-Noise ratio, surface roughness, Taguchi orthogonal array.
Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.