Aircraft Lateral-Directional Stability in Critical Cases via Lyapunov Exponent Criterion
PDF

Keywords

wing rock
nonlinear dynamic system
limit cycle oscillation

How to Cite

Aircraft Lateral-Directional Stability in Critical Cases via Lyapunov Exponent Criterion. (2017). Al-Khwarizmi Engineering Journal, 9(1), 29-38. https://alkej.uobaghdad.edu.iq/index.php/alkej/article/view/156

Abstract

Based on Lyapunov exponent criterion, the aircraft lateral-directional stability during critical flight cases is presented. A periodic motion or limit cycle oscillation isdisplayed. A candidate mechanism for the wing rock limit cycle is the inertia coupling between an unstable lateral-directional (Dutch roll) mode with stable longitudinal (short period) mode. The coupling mechanism is provided by the nonlinear interaction of motion related terms in the complete set equations of motion. To analyze the state variables of the system, the complete set of nonlinear equations of motion at different high angles of attack are solved. A novel analysis including the variation of roll angle as a function of angle of attack is proposed. Furthermore the variation of Lyapunov exponent parameter as function of time is introduced. The numerical result indicated that the system became lightly damped at high angle of attack with increasing the amplitude of aircraft state variables limit cycle. A good agreement between the numerical result and published work is obtained for the onset of limit cycle oscillation, almost at .

PDF

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.