Experimental and Analytical Study of Bending Stresses and Deflections in Curved Beam Made of Laminated Composite Material
PDF

Keywords

Keywords: Curved beam theory, composite material, strength of materials, finite element method.

How to Cite

Experimental and Analytical Study of Bending Stresses and Deflections in Curved Beam Made of Laminated Composite Material. (2017). Al-Khwarizmi Engineering Journal, 10(4), 21-32. https://alkej.uobaghdad.edu.iq/index.php/alkej/article/view/203

Publication Dates

Abstract

Abstract

 

Theoretical and experimental methodologies were assessed to test curved beam made of layered   composite material. The maximum stress and maximum deflection were computed for each layer and the effect of radius of curvature and curve shape on them. Because of the increase of the use of composite materials in aircraft structures and the renewed interest in these types of problems, the presented theoretical assessment was made using three different approaches: curved beam theory and an approximate 2D strength of material equations and finite element method (FEM) analysis by ANSYS 14.5 program for twelve cases of multi-layered cylindrical shell panel differs in fiber orientations and number of layers. One case of E-glass composite material was experimentally made and tested to verify the relation between applied load and maximum deflection and four  models were made of poly carbonyl to determine stresses under bending loads in polar scope, all results were compared with each other, the percentage accuracy was very good. The curved beam theory and strength of material equation formulas results were reasonable for the bottom surface, while it seems not enough for the top surfaces. Also, results explained positions and cases more affected by delaminating and the most preferred part of ellipse shape beam in resisting loads.

 

PDF

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.