التوليف الأخضر وتوصيف جزيئات أكسيد الزنك النانوية باستخدام أوراق الكالبتوز لإزالة صبغة 210 الحمضية السوداء من الوسط المائي
PDF (الإنجليزية)

كيفية الاقتباس

التوليف الأخضر وتوصيف جزيئات أكسيد الزنك النانوية باستخدام أوراق الكالبتوز لإزالة صبغة 210 الحمضية السوداء من الوسط المائي. (2023). مجلة الخوارزمي الهندسية, 19(3), 23-32. https://doi.org/10.22153/kej.2023.02.003

تواريخ المنشور

الملخص

استخدمت هذه الدراسة كبريتات الزنك لإنتاج جزيئات أكسيد الزنك النانوية (ZnO NPs) باستخدام طريقة التوليف الخضراء. يتم استخدام مستخلص أوراق الأوكالبتوس كعامل مختزل فعال وتغطية لتخليق ZnO NPs. تم فحص البنية والتشكل والسلوك الحراري والتركيب الكيميائي والخصائص البصرية للجسيمات النانوية ZnO باستخدام تحليل احتمالية FT-IR و FE-SEM و EDAX و AFM و Zeta. أكدت صور FE-SEM التبلور والشكل الكروي لـ ZnO NPs بحجم يتراوح من (22-37) نانومتر. تم استخدام طريقتين لإعداد ZnO NPs. تضمنت الطريقة الأولى تكليس الناتج ZnO NPs والطريقة الثانية بدون تكليس. تم استخدام ZnO NPs المحضرة كمواد ماصة لإزالة الصبغة السوداء الحمضية 210 (AB210) من مياه الصرف الصحي المحاكاة. كانت كفاءة الإزالة باستخدام ZnO NPs المكلس وغير المكلس 57 ٪ و 59 ٪ على التوالي.
الكلمات الرئيسية: التوليف الأخضر. جسيمات ZnO النانوية ؛ عملية الامتزاز الأوكالبتوس. صبغة حمض الأسود 210 (AB210)

PDF (الإنجليزية)

المراجع

G. E. Do Nascimento, M. M. M. B. Duarte, N. F. Campos, O. R. S. Da Rocha, and V. L. Da Silva, “Adsorption of azo dyes using peanut hull and orange peel: A comparative study,” Environ. Technol. (United Kingdom), vol. 35, no. 11, pp. 1436–1453, 2014, doi: 10.1080/09593330.2013.870234.

M. A. Atiya, A. K. Hassan, and I. M. Luaibi, “Green Synthesis Of Bimetallic Iron/Copper Nanoparticles Using Ficus Leaves Extract For Removing Orange G(OG) Dye From Aqueous Medium,” Nat. Environ. Pollut. Technol., vol. 21, no. 1, pp. 355–365, 2022, doi: 10.46488/NEPT.2022.v21i01.043.

M. A. Atiya, M. J. M-Ridha, and M. A. Saheb, “Removal of aniline blue from textile wastewater using electrocoagulation with the application of the response surface approach,” Iraqi J. Sci., vol. 61, no. 11, pp. 2797–2811, 2020, doi: 10.24996/ijs.2020.61.11.4.

A. Shajahan et al., “Comparative studies of chitosan and its nanoparticles for the adsorption efficiency of various dyes,” Int. J. Biol. Macromol., vol. 104, pp. 1449–1458, 2017, doi: 10.1016/j.ijbiomac.2017.05.128.

T. Priya, B. K. Mishra, and M. N. V. Prasad, Physico-chemical techniques for the removal of disinfection by-products precursors from water. LTD, 2020. doi: 10.1016/b978-0-08-102977-0.00002-0.

E. Y. Shaba, J. O. Jacob, J. O. Tijani, and M. A. T. Suleiman, A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment, vol. 11, no. 2. Springer International Publishing, 2021. doi: 10.1007/s13201-021-01370-z.

M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, and R. Khosravi, “A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions,” Adv. Powder Technol., vol. 28, no. 1, pp. 122–130, 2017, doi: 10.1016/j.apt.2016.09.003.

C. Chinnasamy, P. Tamilselvam, B. Karthick, B. Sidharth, and M. Senthilnathan, “Green Synthesis, Characterization and Optimization Studies of Zinc Oxide Nano Particles Using Costusigneus Leaf Extract,” Mater. Today Proc., vol. 5, no. 2, pp. 6728–6735, 2018, doi: 10.1016/j.matpr.2017.11.331.

Z. A. Mahmoud, M. A. Atyia, and A. K. Hassan, “The Influence of Support Materials on The Photo-Fenton-like Degradation of Azo Dye Using Continuous Nanoparticles Fixed-bed Column,” vol. 18, no. 4, pp. 14–31, 2022.

M. A. Atiya, A. K. Hassan, and F. Q. Kadhim, “Green synthesis of iron nanoparticle using tea leave extract for removal ciprofloxacin (CIP) from aqueous medium,” J. Eng. Sci. Technol., vol. 16, no. 4, pp. 3199–3221, 2021.

S. Fakhari, M. Jamzad, and H. Kabiri Fard, “Green synthesis of zinc oxide nanoparticles: a comparison,” Green Chem. Lett. Rev., vol. 12, no. 1, pp. 19–24, 2019, doi: 10.1080/17518253.2018.1547925.

H. Sawalha et al., “Toward a better understanding of metal nanoparticles, a novel strategy from eucalyptus plants,” Plants, vol. 10, no. 5, pp. 1–22, 2021, doi: 10.3390/plants10050929.

C. Bonfante de Carvalho, M. Espina de Franco, F. S. Souza, and L. A. Féris, “Degradation of Acid Black 210 by advanced oxidative processes: O3 and O3/UV,” Ozone Sci. Eng., vol. 40, no. 5, pp. 372–376, 2018, doi: 10.1080/01919512.2018.1435258.

S. Vasantharaj et al., “Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs),” J. Environ. Chem. Eng., vol. 9, no. 4, p. 105772, 2021, doi: 10.1016/j.jece.2021.105772.

A. A. Barzinjy and H. H. Azeez, “Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill . leaf extract and zinc nitrate hexahydrate salt,” SN Appl. Sci., vol. 2, no. 5, pp. 1–14, 2020, doi: 10.1007/s42452-020-2813-1.

G. E. Lau et al., “Eco-Friendly Photocatalysts for Degradation of Dyes”.

H. Wang, L. Chen, L. Le Weng, M. Y. Zhang, and Q. Shen, “Surface properties and dissolution kinetics of tea polyphenols,” J. Adhes. Sci. Technol., vol. 28, no. 24, pp. 2416–2423, 2014, doi: 10.1080/01694243.2014.968420.

P. Rajiv, S. Rajeshwari, and R. Venckatesh, “Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 112, pp. 384–387, 2013, doi: 10.1016/j.saa.2013.04.072.

K. Sravanthi, D. Ayodhya, and P. Y. Swamy, “Green synthesis, characterization and catalytic activity of 4-nitrophenol reduction and formation of benzimidazoles using bentonite supported zero valent iron nanoparticles,” Mater. Sci. Energy Technol., vol. 2, no. 2, pp. 298–307, 2019, doi: 10.1016/j.mset.2019.02.003.

R. Yuvakkumar, J. Suresh, B. Saravanakumar, A. Joseph Nathanael, S. I. Hong, and V. Rajendran, “Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 137, pp. 250–258, 2015, doi: 10.1016/j.saa.2014.08.022.

A. R. Puthukkara P, S. Jose T, and D. lal S, “Plant mediated synthesis of zero valent iron nanoparticles and its application in water treatment,” J. Environ. Chem. Eng., vol. 9, no. 1, p. 104569, 2021, doi: 10.1016/j.jece.2020.104569.

S. Raja, V. Ramesh, and V. Thivaharan, “Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability,” Arab. J. Chem., vol. 10, no. 2, pp. 253–261, 2017, doi: 10.1016/j.arabjc.2015.06.023.

S. Pai, S. H, T. Varadavenkatesan, R. Vinayagam, and R. Selvaraj, “Photocatalytic zinc oxide nanoparticles synthesis using Peltophorum pterocarpum leaf extract and their characterization,” Optik (Stuttg)., vol. 185, pp. 248–255, 2019, doi: 10.1016/j.ijleo.2019.03.101.

A. T. Mansour et al., “Green Synthesis of Zinc Oxide Nanoparticles Using Red Seaweed for the Elimination of Organic Toxic Dye from an Aqueous Solution,” Materials (Basel)., vol. 15, no. 15, pp. 1–25, 2022, doi: 10.3390/ma15155169.

حقوق الطبع والنشر:  يحتفظ مؤلفو الوصول المفتوح بحقوق الطبع والنشر لاعمالهم، ويتم توزيع جميع مقالات الوصول المفتوح بموجب شروط ترخيص Creative Commons Attribution License، والتي تسمح بالاستخدام غير المقيد والتوزيع والاستنساخ في أي وسيط، بشرط ذكر العمل الأصلي بشكل صحيح. إن استخدام الأسماء الوصفیة العامة، والأسماء التجاریة، والعلامات التجاریة، وما إلی ذلك في ھذا المنشور، حتی وإن لم یتم تحدیدھ بشکل محدد، لا یعني أن ھذه الأسماء غیر محمیة بموجب القوانین واللوائح ذات الصلة. في حين يعتقد أن المشورة والمعلومات في هذه المجلة صحيحة ودقيقة في تاريخ صحتها، لا يمكن للمؤلفين والمحررين ولا الناشر قبول أي مسؤولية قانونية عن أي أخطاء أو سهو قد يتم. لا يقدم الناشر أي ضمان، صريح أو ضمني، فيما يتعلق بالمواد الواردة في هذه الوثيقة.