Surface Roughness Prediction for Steel 304 In Edm Using Response Graph Modeling

Keywords

Electrical discharge machining, Graph Modeling, Response, Surface roughness

How to Cite

Surface Roughness Prediction for Steel 304 In Edm Using Response Graph Modeling. (2018). Al-Khwarizmi Engineering Journal, 14(4), 115-124. https://doi.org/10.22153/kej.2018.05.006

Abstract

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on the surface roughness in the present research. 27 samples were run by using CNC-EDM machine which used for cutting steel 304 with dielectric solution of gas oil by supplied DC current values (10, 20, and 30A). Voltage of (140V) uses to cut 1.7mm thickness of the steel and use the copper electrode. The result from this work is useful to be implemented in industry to reduce the time and cost of Ra prediction. It is observed from response table and response graph that the applied current and pulse on time have the most influence parameters of surface roughness while pulse off time has less influence parameter on it. The supreme and least surface roughness, which is achieved from all the 27 experiments is (4.02 and 2.12µm), respectively. The qualitative assessment reveals that the surface roughness increases as the applied current and pulse on time increases

Copyright: Open Access authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.