الملخص
تم استخدام الكربون المنشط المشتق من المخلفات الزراعية لنبتة الفيكس بنجامينا الزراعية والمُصنَّع بواسطة طريقة الميكروويف مع حمض الفسفوريك ومعالجته بأوكسيد السيليكون (SiO2) لتعزيز قدرة الكاربون المنشط لامتزاز لصبغة الملكيت الأخضر (MG) من المحلول المائي. تم دراسة ثلاثة عوامل بأربعة مستويات للتحقق من تأثيرها على كفاءة أزالة الصيغة الملكيت الأخضر من المحلول المائي منها تركيز الصبغة، وقت الخلط وكمية الكربون المنشط. أظهرت النتائج أن جرعة 0.4 جم / لتر، تركيز صبغة 80 مجم / لتر، ومدة امتصاص 40 دقيقة كشرط أمثل للوصول الى كفاءة الإزالة بحدود 99.13٪. وقد كشفت النتائج أيضًا أن نموذج التوازن الحراري فروندليتش فضلا عن النماذج الحركية الزائفة من الدرجة الثانية كانت أفضل النماذج لوصف بيانات أمتزاز صبغة الملكيت الأخضرعند التوازن.
المراجع
H. Sharifpour, N. Javid, and M. Malakootian, “Investigation of single-walled carbon nanotubes in removal of penicillin g (Benzyl penicillin sodium) from aqueous environments,” Desalin. Water Treat., vol. 124, pp. 248–255, Aug. 2018, doi: 10.5004/DWT.2018.22726.
N. Javid, Z. Honarmandrad, and M. Malakootian, “Ciprofloxacin removal from aqueous solutions by ozonation with calcium peroxide,” Desalin. Water Treat., vol. 174, pp. 178–185, 2020, doi: 10.5004/dwt.2020.24855.
A. H. Mahvi, M. Malakootian, and M. R. Heidari, “Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in Ghochan, Iran,” J. Water Chem. Technol., vol. 33, no. 6, pp. 377–385, Dec. 2011, doi: 10.3103/S1063455X11060051.
M. Malakootian, N. Radhakrishna, M. P. Mazandarany, and H. Hossaini, “Bacterial-aerosol emission from wastewater treatment plant,” New pub Balaban, vol. 51, no. 22–24, pp. 4478–4488, 2013, doi: 10.1080/19443994.2013.769668.
X. Zheng et al., “Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply,” Resour. Conserv. Recycl., vol. 105, pp. 1–10, Dec. 2015, doi: 10.1016/J.RESCONREC.2015.09.012.
S. Natarajan, H. C. Bajaj, and R. J. Tayade, “Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process,” J. Environ. Sci., vol. 65, pp. 201–222, Mar. 2018, doi: 10.1016/J.JES.2017.03.011.
E. A. Dil et al., “Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: Analysis by derivative spectrophotometry,” J. Ind. Eng. Chem., vol. 34, pp. 186–197, Feb. 2016, doi: 10.1016/J.JIEC.2015.11.010.
M. Abbas et al., “Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review,” Sci. Total Environ., vol. 626, pp. 1295–1309, Jun. 2018, doi: 10.1016/J.SCITOTENV.2018.01.066.
S. De Gisi, G. Lofrano, M. Grassi, and M. Notarnicola, “Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review,” Sustain. Mater. Technol., vol. 9, pp. 10–40, Sep. 2016, doi: 10.1016/J.SUSMAT.2016.06.002.
M. Iqbal, M. Abbas, J. Nisar, A. Nazir, and A. Qamar, “Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: A review,” Chem. Int., vol. 5, no. 1, pp. 1–80, 2019.
N. Mohammadi, H. Khani, V. K. Gupta, E. Amereh, and S. Agarwal, “Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies,” J. Colloid Interface Sci., vol. 362, no. 2, pp. 457–462, Oct. 2011, doi: 10.1016/J.JCIS.2011.06.067.
R. Saravanan, S. Karthikeyan, V. K. Gupta, G. Sekaran, V. Narayanan, and A. Stephen, “Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination,” Mater. Sci. Eng. C, vol. 33, no. 1, pp. 91–98, Jan. 2013, doi: 10.1016/J.MSEC.2012.08.011.
M. Malakootian, A. Nasiri, A. Asadipour, and E. Kargar, “Facile and green synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media,” Process Saf. Environ. Prot., vol. 129, pp. 138–151, Sep. 2019, doi: 10.1016/J.PSEP.2019.06.022.
A. Kausar et al., “Dyes adsorption using clay and modified clay: A review,” J. Mol. Liq., vol. 256, pp. 395–407, Apr. 2018, doi: 10.1016/J.MOLLIQ.2018.02.034.
V. Katheresan, J. Kansedo, and S. Y. Lau, “Efficiency of various recent wastewater dye removal methods: A review,” J. Environ. Chem. Eng., vol. 6, no. 4, pp. 4676–4697, Aug. 2018, doi: 10.1016/J.JECE.2018.06.060.
A. Saravanan et al., “Phytoremediation of Cr(VI) ion contaminated soil using Black gram (Vigna mungo): Assessment of removal capacity,” J. Environ. Chem. Eng., vol. 7, no. 3, p. 103052, Jun. 2019, doi: 10.1016/J.JECE.2019.103052.
L. Gan, F. Zhou, G. Owens, and Z. Chen, “Burkholderia cepacia immobilized on eucalyptus leaves used to simultaneously remove malachite green (MG) and Cr(VI),” Colloids Surfaces B Biointerfaces, vol. 172, pp. 526–531, Dec. 2018, doi: 10.1016/J.COLSURFB.2018.09.008.
A. A. El-Zahhar and N. S. Awwad, “Removal of malachite green dye from aqueous solutions using organically modified hydroxyapatite,” J. Environ. Chem. Eng., vol. 4, no. 1, pp. 633–638, Mar. 2016, doi: 10.1016/J.JECE.2015.12.014.
T. R. Sundararaman et al., “Adsorptive Removal of Malachite Green Dye onto Coal-Associated Soil and Conditions Optimization,” Adsorpt. Sci. Technol., vol. 2021, 2021, doi: 10.1155/2021/5545683.
F. Jiang, D. M. Dinh, and Y. Lo Hsieh, “Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels,” Carbohydr. Polym., vol. 173, pp. 286–294, Oct. 2017, doi: 10.1016/J.CARBPOL.2017.05.097.
S. Hajialigol and S. Masoum, “Optimization of biosorption potential of nano biomass derived from walnut shell for the removal of Malachite Green from liquids solution: Experimental design approaches,” J. Mol. Liq., vol. 286, p. 110904, Jul. 2019, doi: 10.1016/J.MOLLIQ.2019.110904.
S. Jeevanantham, A. Saravanan, R. V. Hemavathy, P. S. Kumar, P. R. Yaashikaa, and D. Yuvaraj, “Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects,” Environ. Technol. Innov., vol. 13, pp. 264–276, Feb. 2019, doi: 10.1016/J.ETI.2018.12.007.
V. Tharaneedhar, P. Senthil Kumar, A. Saravanan, C. Ravikumar, and V. Jaikumar, “Prediction and interpretation of adsorption parameters for the sequestration of methylene blue dye from aqueous solution using microwave assisted corncob activated carbon,” Sustain. Mater. Technol., vol. 11, pp. 1–11, Apr. 2017, doi: 10.1016/J.SUSMAT.2016.11.001.
A. E. Burakov et al., “Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review,” Ecotoxicol. Environ. Saf., vol. 148, pp. 702–712, Feb. 2018, doi: 10.1016/J.ECOENV.2017.11.034.
Suhas, V. K. Gupta, P. J. M. Carrott, R. Singh, M. Chaudhary, and S. Kushwaha, “Cellulose: A review as natural, modified and activated carbon adsorbent,” Bioresour. Technol., vol. 216, pp. 1066–1076, Sep. 2016, doi: 10.1016/J.BIORTECH.2016.05.106.
A. Saravanan, S. Jeevanantham, P. Senthil Kumar, S. Varjani, P. R. Yaashikaa, and S. Karishma, “Enhanced Zn(II) ion adsorption on surface modified mixed biomass – Borassus flabellifer and Aspergillus tamarii: Equilibrium, kinetics and thermodynamics study,” Ind. Crops Prod., vol. 153, p. 112613, Oct. 2020, doi: 10.1016/J.INDCROP.2020.112613.
S. Sadaf, H. N. Bhatti, S. Nausheen, and M. Amin, “Application of a novel lignocellulosic biomaterial for the removal of Direct Yellow 50 dye from aqueous solution: Batch and column study,” J. Taiwan Inst. Chem. Eng., vol. 47, pp. 160–170, Feb. 2015, doi: 10.1016/J.JTICE.2014.10.001.
M. M. Meimand, N. Javid, and M. Malakootian, “Adsorption of Sulfur Dioxide on Clinoptilolite/Nano Iron Oxide and Natural Clinoptilolite,” Heal. Scope 2019 82, vol. 8, no. 2, Mar. 2019, doi: 10.5812/JHEALTHSCOPE.69158.
F. Nekouei, S. Nekouei, I. Tyagi, and V. K. Gupta, “Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent,” J. Mol. Liq., vol. 201, pp. 124–133, Jan. 2015, doi: 10.1016/J.MOLLIQ.2014.09.027.
S. Suganya, P. Senthil Kumar, A. Saravanan, P. Sundar Rajan, and C. Ravikumar, “Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: Theoretical and experimental analysis,” Environ. Toxicol. Pharmacol., vol. 50, pp. 45–57, Mar. 2017, doi: 10.1016/J.ETAP.2017.01.014.
L. Lin, S. Tang, X. Wang, X. Sun, and A. Yu, “Adsorption of malachite green from aqueous solution by nylon microplastics: Reaction mechanism and the optimum conditions by response surface methodology,” Process Saf. Environ. Prot., vol. 140, pp. 339–347, Aug. 2020, doi: 10.1016/J.PSEP.2020.05.019.
F. Bouaziz, M. Koubaa, F. Kallel, R. E. Ghorbel, and S. E. Chaabouni, “Adsorptive removal of malachite green from aqueous solutions by almond gum: Kinetic study and equilibrium isotherms,” Int. J. Biol. Macromol., vol. 105, pp. 56–65, Dec. 2017, doi: 10.1016/J.IJBIOMAC.2017.06.106.
J. Wu, J. Yang, P. Feng, G. Huang, C. Xu, and B. Lin, “High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar,” Chemosphere, vol. 246, p. 125734, May 2020, doi: 10.1016/J.CHEMOSPHERE.2019.125734.
P. Geetha, M. S. Latha, and M. Koshy, “Biosorption of malachite green dye from aqueous solution by calcium alginate nanoparticles: Equilibrium study,” J. Mol. Liq., vol. 212, pp. 723–730, Dec. 2015, doi: 10.1016/J.MOLLIQ.2015.10.035.
S. Banerjee, G. C. Sharma, R. K. Gautam, M. C. Chattopadhyaya, S. N. Upadhyay, and Y. C. Sharma, “Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent,” J. Mol. Liq., vol. 213, pp. 162–172, Jan. 2016, doi: 10.1016/J.MOLLIQ.2015.11.011.
H. A. Chanzu, J. M. Onyari, and P. M. Shiundu, “Brewers’ spent grain in adsorption of aqueous Congo Red and malachite Green dyes: Batch and continuous flow systems,” J. Hazard. Mater., vol. 380, p. 120897, Dec. 2019, doi: 10.1016/J.JHAZMAT.2019.120897.
E. Mkrtchyan, A. Burakov, and I. Burakova, “The Adsorption of Malachite Green on Graphene Nanocomposites: A Study on Kinetics Under Dynamic Conditions,” Mater. Today Proc., vol. 11, pp. 404–409, Jan. 2019, doi: 10.1016/J.MATPR.2019.01.004.
P. Saha, S. Chowdhury, S. Gupta, and I. Kumar, “Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin,” Chem. Eng. J., vol. 165, no. 3, pp. 874–882, Dec. 2010, doi: 10.1016/J.CEJ.2010.10.048.
B. QU, J. ZHOU, X. XIANG, C. ZHENG, H. ZHAO, and X. ZHOU, “Adsorption behavior of Azo Dye C. I. Acid Red 14 in aqueous solution on surface soils,” J. Environ. Sci., vol. 20, no. 6, pp. 704–709, Jan. 2008, doi: 10.1016/S1001-0742(08)62116-6.
J. B. Tarkwa et al., “Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma,” Appl. Catal. B Environ., vol. 246, pp. 211–220, Jun. 2019, doi: 10.1016/J.APCATB.2019.01.066.
I. A. Rahman, B. Saad, S. Shaidan, and E. S. Sya Rizal, “Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical–thermal process,” Bioresour. Technol., vol. 96, no. 14, pp. 1578–1583, Sep. 2005, doi: 10.1016/J.BIORTECH.2004.12.015.
Y. Önal, C. Akmil-Başar, D. Eren, Ç. Sarici-Özdemir, and T. Depci, “Adsorption kinetics of malachite green onto activated carbon prepared from Tunçbilek lignite,” J. Hazard. Mater., vol. 128, no. 2–3, pp. 150–157, Feb. 2006, doi: 10.1016/J.JHAZMAT.2005.07.055.
B. D. Zdravkov, J. J. Čermák, M. Šefara, and J. Janků, “Pore classification in the characterization of porous materials: A perspective,” Cent. Eur. J. Chem., vol. 5, no. 2, pp. 385–395, Jun. 2007, doi: 10.2478/S11532-007-0017-9/MACHINEREADABLECITATION/RIS.
E. Yagmur, M. Ozmak, and Z. Aktas, “A novel method for production of activated carbon from waste tea by chemical activation with microwave energy,” Fuel, vol. 87, no. 15–16, pp. 3278–3285, Nov. 2008, doi: 10.1016/J.FUEL.2008.05.005.
B. H. Hameed, J. M. Salman, and A. L. Ahmad, “Adsorption isotherm and kinetic modeling of 2 , 4-D pesticide on activated carbon derived from date stones,” vol. 163, pp. 121–126, 2009, doi: 10.1016/j.jhazmat.2008.06.069.
J. Yang and K. Qiu, “Development of high surface area mesoporous activated carbons from herb residues,” Chem. Eng. J., vol. 167, no. 1, pp. 148–154, Feb. 2011, doi: 10.1016/J.CEJ.2010.12.013.
W. Tongpoothorn, M. Sriuttha, P. Homchan, S. Chanthai, and C. Ruangviriyachai, “Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties,” Chem. Eng. Res. Des., vol. 89, no. 3, pp. 335–340, Mar. 2011, doi: 10.1016/J.CHERD.2010.06.012.
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
الحقوق الفكرية (c) 2023 مجلة الخوارزمي الهندسية